Investigating the impacts of charge composition and temperature on ammonia/hydrogen combustion in a heavy-duty spark-ignition engine

被引:3
|
作者
Yu, Zining [1 ]
Yang, Rui [1 ]
Yue, Zongyu [1 ]
Yao, Mingfa [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia; Hydrogen; Combustion; Emission; Internal combustion engine; SI-ENGINE; AMMONIA; PERFORMANCE; EMISSIONS; OXIDATION; MECHANISM; MIXTURES; BEHAVIOR; LAMINAR;
D O I
10.1016/j.ijhydene.2024.11.241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia, as a hydrogen carrier with mature production technology and convenient storage, has become one of the most promising zero carbon fuels in recent years. The use of ammonia/hydrogen mixture fuel in spark ignition (SI) engines has drawn significant attentions since it solves the problems of low flame speed, high ignition energy requirement and narrow flammable range of pure ammonia. In this study, the combustion and emission processes of an ammonia/hydrogen port fuel injection (PFI) engine at high load operation are numerically analyzed to investigate the effects of intake hydrogen energy ratio (HER), equivalence ratio (phi), intake temperature and combustion chamber wall temperature on energy distribution and pollutants. The results indicate that under the same HER of 25%, the lean-burned mode provides favorable thermal efficiency compared to stoichiometric mode due to reduced combustion and wall heat loss. However, lower cylinder temperature at lean condition inhibits the participation of NH3 in the reduction reactions and the consumption of N2O, increasing the residuals of both pollutants. The NOx emission is promoted by excessive O radicals at lean conditions, and the pathways of fuel NOx and thermal NOx are also discussed using an isotope labeling method. At stoichiometric mode, increasing fuel HER (10%-25%) only has minor impacts on improving thermal efficiency, but can promote the consumption of NH3 and N2O by increasing H radicals and cylinder temperature. The study also shows that optimizing the intake and wall temperatures can effectively reduce NH3 and N2O emissions by 87.5% and 71.7%, respectively, while slightly reducing NOx.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条
  • [1] Numerical Investigation of a Heavy-Duty Compression Ignition Engine Converted to Ammonia Spark-Ignition Operation
    Liu, Jinlong
    Ulishney, Christopher J.
    Dumitrescu, Cosmin Emil
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2023, 145 (08):
  • [2] Investigation on injection strategy affecting the mixture formation and combustion of a heavy-duty spark-ignition methanol engine
    Wei, Yanju
    Zhu, Zengqiang
    Liu, Shenghua
    Liu, He
    Shi, Zihang
    Zeng, Zhixin
    FUEL, 2023, 334
  • [3] HEAVY-DUTY SPARK-IGNITION ENGINES FUELED WITH METHANE
    GAMBINO, M
    IANNACCONE, S
    UNICH, A
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1991, 113 (03): : 359 - 364
  • [4] Multiple Combustion Stages Inside a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
    Liu, Jinlong
    Dumitrescu, Cosmin Emil
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (02):
  • [5] Advanced turbulence and combustion modeling for the study of a swirl-assisted natural gas spark-ignition heavy-duty engine
    Riccardi, Marco
    De Bellis, Vincenzo
    Sforza, Lorenzo
    Beatrice, Carlo
    Bozza, Fabio
    Mirzaeian, Mohsen
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2023, 24 (08) : 3400 - 3416
  • [6] Experimental Investigation of a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation
    Liu, Jinlong
    Bommisetty, Hemanth Kumar
    Dumitrescu, Cosmin Emil
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (11):
  • [7] Ammonia Combustion in a Spark-Ignition Engine Supported with Dimethyl Ether
    Tutak, Wojciech
    Pyrc, Michal
    Gruca, Michal
    Jamrozik, Arkadiusz
    ENERGIES, 2023, 16 (21)
  • [8] EXPERIMENTAL SETUP OF COMBUSTION VISUALIZATION INSIDE A HEAVY-DUTY DIESEL ENGINE CONVERTED TO NATURAL-GAS SPARK-IGNITION OPERATION
    Padmanaban, Vishnu
    Liu, Jinlong
    Dumitrescu, Cosmin E.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
  • [9] Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition
    Liu, Jinlong
    Dumitrescu, Cosmin E.
    APPLIED ENERGY, 2019, 248 : 95 - 103
  • [10] MEASUREMENT OF THE COMBUSTION GAS TEMPERATURE IN THE SPARK-IGNITION ENGINE
    SHOJI, H
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1985, 28 (245): : 2687 - 2693