UPL-Net: Uncertainty-aware prompt learning network for semi-supervised action recognition

被引:0
|
作者
Yang, Shu [1 ]
Li, Ya-Li [1 ]
Wang, Shengjin [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
Semi-supervised learning; Prompt learning; Vision-language pre-training; Action recognition; Uncertainty estimation;
D O I
10.1016/j.neucom.2024.129126
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on understanding human behavior in videos by reframing the traditional video classification task as a transfer learning problem centered on visual concepts. Unlike existing action recognition approaches that rely solely on single-modal representations and video classifiers, our method leverages an uncertainty- aware prompt learning network (UPL-Net). This network is designed to extract spatiotemporal features that are pertinent to action-related concepts in videos while ensuring that the visual concepts derived from images are preserved. Furthermore, we introduce an uncertainty-guided semi-supervised learning strategy that harnesses unlabeled videos to enhance the model's generalizability. Extensive experiments conducted on benchmark datasets, namely UCF and HMDB, demonstrate the superiority of our approach over state-of-the-art semi- supervised action recognition methods. Notably, under a 1% labeling rate on the UCF dataset, our method achieves a significant improvement of 12.8%, underscoring its effectiveness in leveraging limited labeled data and abundant unlabeled videos for improved performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Uncertainty-Aware Contrastive Learning for semi-supervised named entity recognition
    Yang, Kang
    Yang, Zhiwei
    Zhao, Songwei
    Yang, Zhejian
    Zhang, Sinuo
    Chen, Hechang
    KNOWLEDGE-BASED SYSTEMS, 2024, 296
  • [2] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Li, Chenxin
    Ma, Wenao
    Sun, Liyan
    Ding, Xinghao
    Huang, Yue
    Wang, Guisheng
    Yu, Yizhou
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 3151 - 3164
  • [3] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Chenxin Li
    Wenao Ma
    Liyan Sun
    Xinghao Ding
    Yue Huang
    Guisheng Wang
    Yizhou Yu
    Neural Computing and Applications, 2022, 34 : 3151 - 3164
  • [4] Uncertainty-aware graph neural network for semi-supervised diversified recommendation
    Cao, Minjie
    Tran, Thomas
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [5] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [6] Spatial Uncertainty-Aware Semi-Supervised Crowd Counting
    Meng, Yanda
    Zhang, Hongrun
    Zhao, Yitian
    Yang, Xiaoyun
    Qian, Xuesheng
    Huang, Xiaowei
    Zheng, Yalin
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15529 - 15539
  • [7] Uncertainty-aware semi-supervised few shot segmentation
    Kim, Soopil
    Chikontwe, Philip
    An, Sion
    Park, Sang Hyun
    PATTERN RECOGNITION, 2023, 137
  • [8] Uncertainty-Aware Semi-Supervised Method for Pectoral Muscle Segmentation
    Tang, Yutao
    Guo, Yongze
    Wang, Huayu
    Song, Ting
    Lu, Yao
    BIOENGINEERING-BASEL, 2025, 12 (01):
  • [9] Semi-supervised contrastive learning for flotation process monitoring with uncertainty-aware prototype optimization
    Ai, Mingxi
    Zhang, Jin
    Li, Peng
    Wu, Jiande
    Tang, Zhaohui
    Xie, Yongfang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [10] Uncertainty-Aware Contrastive Learning for Semi-Supervised Classification of Multimodal Remote Sensing Images
    Ding, Kexin
    Lu, Ting
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13