Denoising Autoencoder-Based Defensive Distillation as an Adversarial Robustness Algorithm Against Data Poisoning Attacks

被引:1
|
作者
Badjie, Bakary [1 ]
Cecílio, José [1 ]
Casimiro, António [1 ]
机构
[1] LASIGE, Departamento de Informática, Faculdade de Ciências da Universidade Lisboa, Lisboa, Portugal
来源
Ada User Journal | 2023年 / 44卷 / 03期
关键词
Compendex;
D O I
10.1145/3672359.3672362
中图分类号
学科分类号
摘要
Adversarial machine learning
引用
收藏
页码:209 / 213
相关论文
共 50 条
  • [1] Data Poisoning Attacks against Autoencoder-based Anomaly Detection Models: a Robustness Analysis
    Bovenzi, Giampaolo
    Foggia, Alessio
    Santella, Salvatore
    Testa, Alessandro
    Persico, Valerio
    Pescape, Antonio
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5427 - 5432
  • [2] Toward Transferable Adversarial Attacks Against Autoencoder-Based Network Intrusion Detectors
    Zhang, Yihang
    Wu, Yingwen
    Huang, Xiaolin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13863 - 13872
  • [3] Robust Graph Autoencoder-Based Detection of False Data Injection Attacks Against Data Poisoning in Smart Grids
    Takiddin A.
    Ismail M.
    Atat R.
    Davis K.R.
    Serpedin E.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1287 - 1301
  • [4] Adversarial data poisoning attacks against the PC learning algorithm
    Alsuwat, Emad
    Alsuwat, Hatim
    Valtorta, Marco
    Farkas, Csilla
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2020, 49 (01) : 3 - 31
  • [5] RAIDS: Robust autoencoder-based intrusion detection system model against adversarial attacks
    Sarikaya, Alper
    Kilic, Banu Gunel
    Demirci, Mehmet
    COMPUTERS & SECURITY, 2023, 135
  • [6] DDSA: A Defense Against Adversarial Attacks Using Deep Denoising Sparse Autoencoder
    Bakhti, Yassine
    Fezza, Sid Ahmed
    Hamidouche, Wassim
    Deforges, Olivier
    IEEE ACCESS, 2019, 7 : 160397 - 160407
  • [7] Utilizing Autoencoder to Improve the Robustness of Intrusion Detection Systems against Adversarial Attacks
    Kibenge-MacLeod, Patricia
    Ye, Qiang
    Cui, Fangda
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 970 - 975
  • [8] Proving Robustness of KNN Against Adversarial Data Poisoning
    Li, Yannan
    Wang, Jingbo
    Wang, Chao
    2022 FORMAL METHODS IN COMPUTER-AIDED DESIGN, FMCAD, 2022, 3 : 7 - 16
  • [9] Training Strategies for Autoencoder-based Detection of False Data Injection Attacks
    Wang, Chenguang
    Pan, Kaikai
    Tindemans, Simon
    Palensky, Peter
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 1 - 5
  • [10] Intrinsic Certified Robustness of Bagging against Data Poisoning Attacks
    Jia, Jinyuan
    Cao, Xiaoyu
    Gong, Neil Zhenqiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7961 - 7969