Experimental investigation of flexural properties of engineered cementitious composites reinforced with superelastic shape memory alloy fibers under cyclic loading

被引:0
|
作者
Qian, Hui [1 ,2 ]
Lv, Qianqian [1 ]
Chen, Guolin [1 ]
Shi, Yifei [1 ]
Wu, Peng [1 ]
机构
[1] Zhengzhou Univ, Sch Civil Engn, Civil Bldg, Zhengzhou 450001, Henan, Peoples R China
[2] Henan Polytech Univ, Sch Civil Engn, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Shape memory alloy (SMA) fiber; Engineered cementitious composites (ECC); Cyclic loading; Four-point bending; Self-centering; Energy dissipation capacity; MECHANICAL-PROPERTIES; MORTAR BEAMS; IMPACT; NITI; SMA;
D O I
10.1016/j.conbuildmat.2024.139671
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To further enhance the flexural performance and self-centering capacity of engineered cementitious composites (ECC) under dynamic loading and harsh environmental conditions, this study introduces superelastic shape memory alloy (SMA) fibers into PVA-ECC, resulting in hybrid fiber-reinforced cementitious composites (SMAFECC). The mechanical properties of SMAF-ECC thin plates under cyclic four-point bending tests were systematically investigated. Using digital image correlation (DIC) technology, the effects of SMAF content, diameter, and shape on mid-span deflection, self-centering capacity, energy dissipation, cyclic modulus, and equivalent viscous damping coefficient were analyzed. The results indicate that SMAF with a content of 0.5 %, diameter of 0.7 mm, and flat-headed shape exhibited the best overall performance. As the SMAF content and diameter increased, the cyclic modulus of the specimens significantly improved, while residual deflection decreased by 61.9 %. The self-centering factor r increased to 0.85, representing a 30.8 % improvement over conventional ECC. Energy dissipation capacity increased by 20 %-50 %, but declined after the maximum deflection. Simultaneously, the equivalent viscous damping coefficient increased by 5.6 %-11.1 % in the later stages. These findings provide a theoretical foundation for the application and optimized design of SMAF-ECC materials.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Flexural behaviour of superelastic Ni-Ti shape memory alloy fibre-reinforced upcycled cementitious composites under cyclic loading
    Thomas, Geethu Elsa
    Sajith, A. S.
    Indira, P. V.
    JOURNAL OF BUILDING ENGINEERING, 2024, 86
  • [2] Optimizing superelastic shape-memory alloy fibers for enhancing the pullout performance in engineered cementitious composites
    Umar, Muhammad
    Qian, Hui
    Almujibah, Hamad
    Khan, Muhammad Nasir Ayaz
    Raza, Ali
    Manan, Aneel
    Shi, Yifei
    Ali, Muhammad Faizan
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2024, 31 (01)
  • [3] Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading
    Daghash, Sherif M.
    Ozbulut, Osman E.
    MATERIALS & DESIGN, 2016, 111 : 504 - 512
  • [4] Hysteretic Behavior of Self-Centering Shear Wall Incorporating Superelastic Shape Memory Alloy Bars and Engineered Cementitious Composites Subjected to Cyclic Loading
    Qian, Hui
    Kang, Liping
    Li, Zongao
    Shi, Yifei
    Wang, Xiangyu
    Li, Hongnan
    JOURNAL OF STRUCTURAL ENGINEERING, 2024, 150 (09)
  • [5] Investigation of Fibers Reinforced Engineered Cementitious Composites Properties Using Quartz Powder
    Liew, M. S.
    Aswin, Muhammad
    Danyaro, Kamaluddeen Usman
    Mohammed, Bashar S.
    Al-Yacouby, A. M.
    MATERIALS, 2020, 13 (11)
  • [6] Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages
    Elbahy, Yamen Ibrahim
    Youssef, Maged A.
    ENGINEERING STRUCTURES, 2019, 181 : 246 - 259
  • [7] Experimental investigation into NiTi shape memory alloy panels under cyclic shear loading
    Liu, Wenyuan
    Sun, Guohua
    Chen, Li
    Kong, Jing
    ENGINEERING STRUCTURES, 2021, 245
  • [8] Experimental investigation on flexural properties of self-healing composites reinforced by shape memory strip
    Ghanbari, H.
    Khalili, S. M. R.
    Eslami-Farsani, R.
    Khalili, S.
    Mahajan, P.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (07) : 753 - 762
  • [9] Mechanical Behavior of Shape Memory Alloy Fibers Embedded in Engineered Cementitious Composite Matrix under Cyclic Pullout Loads
    Yang, Zhao
    Du, Yalong
    Liang, Yujia
    Ke, Xiaolong
    MATERIALS, 2022, 15 (13)
  • [10] Constitutive modelling of transformation pattern in superelastic NiTi shape memory alloy under cyclic loading
    Xiao, Yao
    Jiang, Dongjie
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 182