Camera and LIDAR fusion for mapping of actively Illuminated subterranean voids

被引:0
|
作者
Wong U. [1 ]
Garney B. [2 ]
Whittaker W. [1 ]
Whittaker R. [1 ]
机构
[1] Robotics Institute, Carnegie Mellon University
来源
Springer Tracts in Advanced Robotics | 2010年 / 62卷
关键词
D O I
10.1007/978-3-642-13408-1_38
中图分类号
学科分类号
摘要
A method is developed that improves the accuracy of super-resolution range maps over interpolation by fusing actively illuminated HDR camera imagery with LIDAR data in dark subterranean environments. The key approach is shape recovery from estimation of the illumination function and integration in a Markov Random Field (MRF) framework. A virtual reconstruction using data collected from the Bruceton Research Mine is presented. © Springer-Verlag Berlin Heidelberg 2010.
引用
收藏
页码:421 / 430
页数:9
相关论文
共 50 条
  • [1] Camera and LIDAR Fusion for Mapping of Actively Illuminated Subterranean Voids
    Wong, Uland
    Garney, Ben
    Whittaker, Warren
    Whittaker, Red
    FIELD AND SERVICE ROBOTICS, 2010, 62 : 421 - +
  • [2] Terrain Traversability Mapping Based on LiDAR and Camera Fusion
    Zhou, Lupeng
    Wang, Jikai
    Lin, Shiqi
    Chen, Zonghai
    2022 8TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA 2022), 2022, : 217 - 222
  • [3] SLAM Mapping of Information Fusion between Lidar and Depth Camera
    Wang, Zhihao
    Hao, Weidong
    Huang, Yiren
    Wu, Hao
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 142 - 145
  • [4] Fusion of Camera and Lidar Data for Large Scale Semantic Mapping
    Westfechtel, Thomas
    Ohno, Kazunori
    Neto, Ranulfo Plutarco Bezerra
    Kojima, Shotaro
    Tadokoro, Satoshi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 257 - 264
  • [5] Implementation and Optimization of LiDAR and Camera Fusion Mapping for Indoor Robots
    Deng, Yue
    Lu, Zhongliang
    Wang, Rui
    2022 6TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS 2022), 2022, : 86 - 91
  • [6] A LiDAR and camera fusion-based approach to mapping and navigation
    Zhang, Min
    Tang, Di
    Liu, Cong
    Xu, Xiaobin
    Tan, Zhiying
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 4163 - 4168
  • [7] LiDAR, IMU, and camera fusion for simultaneous localization and mapping: a systematic review
    Fan, Zheng
    Zhang, Lele
    Wang, Xueyi
    Shen, Yilan
    Deng, Fang
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [8] Camera-LIDAR Integration: Probabilistic Sensor Fusion for Semantic Mapping
    Berrio, Julie Stephany
    Shan, Mao
    Worrall, Stewart
    Nebot, Eduardo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7637 - 7652
  • [9] Gmapping Mapping Based on Lidar and RGB-D Camera Fusion
    Li, Quanfeng
    Wu, Haibo
    Chen, Jiang
    Zhang, Yixiao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (12)
  • [10] Vehicle Simultaneous Localization and Mapping Algorithm with Lidar-camera Fusion
    Yu Z.-J.
    Zhang C.-G.
    Guo B.-Q.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (04): : 72 - 81