Unveiling the particle-feature influence of lithium nickel manganese cobalt oxide on the high-rate performances of practical lithium-ion batteries

被引:0
|
作者
Wang, Hong-Yu [1 ,2 ]
Mei, Shi-Lin [2 ,3 ]
Tan, Xiao-Lan [1 ,2 ]
Lu, Bao-Hua [2 ]
Li, Nan [2 ]
Wang, Zhen-Bo [1 ,4 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
[2] Xian SaftyEnergy Technol Co Ltd, Xian 710299, Peoples R China
[3] Beijing Inst Technol, Sch Mechatron Engn, State Key Lab Explos Sci & Safety Protect, Beijing 100081, Peoples R China
[4] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518071, Peoples R China
关键词
High-rate lithium-ion batteries; Lithium nickel manganese cobalt oxide; Particle feature; Polycrystalline; Single-crystalline; NI-RICH; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; HIGH-VOLTAGE; CYCLING PERFORMANCE; CO; LINI0.5CO0.2MN0.3O2; SUBSTITUTION; STABILITY;
D O I
10.1016/j.jallcom.2024.177774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The commercialized lithium nickel manganese cobalt oxides have been extensively applied for high-rate lithiumion batteries due to its collective merits of fast kinetics, high specific capacity, and reasonable cost. The optimization on lithium nickel manganese cobalt oxide particles is crucial for high-rate batteries since the rate capability, storage and cycling stability are highly dependent on the chemical and physical properties of the cathode materials. Herein, the particle-feature influence on the high-rate performances is investigated to unveil the structure-property relationship. Through systematic electrochemical analysis and material characterizations, a direct comparison among commercial lithium nickel manganese cobalt oxide cathode materials with different particle size, doping, and crystalline structures has been performed. It is found that for polycrystalline lithium nickel manganese cobalt oxide materials, appropriate Al and Zr doping and small particle size are beneficial to superior rate performance and cycling stability up to 30 C. While single-crystalline particles show outstanding storage properties compared to polycrystalline particles with similar size and ion doping. Morphological and structural evolution of the lithium nickel manganese cobalt oxide particles after cycling has been revealed including the changed mixing degree of Li+/Ni2+, collapsing of primary particles and different parasitic reactions between the electrolyte and the particle surface. This work can provide direct guidance for the subtle design of efficient cathodes for high-rate lithium-ion batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries
    Tong, Wei
    Huang, Yudai
    Cai, Yanjun
    Guo, Yong
    Wang, Xingchao
    Jia, Dianzeng
    Sun, Zhipeng
    Pang, Weikong
    Guo, Zaiping
    Zong, Jun
    APPLIED SURFACE SCIENCE, 2018, 428 : 1036 - 1045
  • [2] An application of lithium cobalt nickel manganese oxide to high-power and high-energy density lithium-ion batteries
    Yoshizawa, Hiroshi
    Ohzuku, Tsutomu
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 813 - 817
  • [3] Porous lithium nickel cobalt manganese oxide hierarchical nanosheets as high rate capability cathodes for lithium ion batteries
    Li, Jili
    Wang, Xiaofeng
    Zhao, Junwei
    Chen, Jian
    Jia, Tiekun
    Cao, Chuanbao
    JOURNAL OF POWER SOURCES, 2016, 307 : 731 - 737
  • [4] Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries
    Ding, Yuan-Li
    Goh, Bee Min
    Zhang, Han
    Loh, Kian Ping
    Lu, Li
    JOURNAL OF POWER SOURCES, 2013, 236 : 1 - 9
  • [5] Porous Manganese Oxide Networks as High-Capacity and High-Rate Anodes for Lithium-Ion Batteries
    Choi, Jaeho
    Byun, Woo Jin
    Kang, DongHwan
    Lee, Jung Kyoo
    ENERGIES, 2021, 14 (05)
  • [6] Effects of Copper Doping in High-Rate, Lithium Manganese-Rich Layered Oxide Cathodes for Lithium-Ion Batteries
    Cabello, Marta
    Drewett, Nicholas
    Aduviri, Clara
    Villaverde, Aitor
    CHEMELECTROCHEM, 2023, 10 (15)
  • [7] Issues and challenges of layered lithium nickel cobalt manganese oxides for lithium-ion batteries
    Chen, Shi
    Zhang, Xikun
    Xia, Maoting
    Wei, Kaiyuan
    Zhang, Liyuan
    Zhang, Xiaoqiang
    Cui, Yanhua
    Shu, Jie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
  • [8] Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries
    Ko, Gyeongbin
    Jeong, Seongdeock
    Park, Sanghyuk
    Lee, Jimin
    Kim, Seoa
    Shin, Youngjun
    Kim, Wooseok
    Kwon, Kyungjung
    ENERGY STORAGE MATERIALS, 2023, 60
  • [9] Realizing High Voltage Lithium Cobalt Oxide in Lithium-Ion Batteries
    Wang, Xiao
    Wang, Xinyang
    Lu, Yingying
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (24) : 10119 - 10139
  • [10] Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities
    Qi, Yue
    Du, Ning
    Zhang, Hui
    Wang, Jiazheng
    Yang, Yang
    Yang, Deren
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 521 : 83 - 89