Run-time parameter selection and tuning for energy optimization algorithms

被引:0
|
作者
Mauser, Ingo [1 ]
Dorscheid, Marita [2 ]
Schmeck, Hartmut [2 ]
机构
[1] FZI Research Center for Information Technology, Karlsruhe,76131, Germany
[2] Karlsruhe Institute of Technology – Institute AIFB, Karlsruhe,76128, Germany
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8672卷
关键词
Risk perception - Energy management systems - Evolutionary algorithms - Parameter estimation;
D O I
10.1007/978-3-319-10762-2_8
中图分类号
学科分类号
摘要
Energy Management Systems (EMS) promise a great potential to enable the sustainable and efficient integration of distributed energy generation from renewable sources by optimization of energy flows. In this paper, we present a run-time selection and meta-evolutionary parameter tuning component for optimization algorithms in EMS and an approach for the distributed application of this component. These have been applied to an existing EMS, which uses an Evolutionary Algorithm. Evaluations of the component in realistic scenarios showreduced run-timeswith similar or even improved solution quality, while the distributed application reduces the risk of over-confidence and over-tuning. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:80 / 89
相关论文
共 50 条
  • [1] Run-Time Parameter Selection and Tuning for Energy Optimization Algorithms
    Mauser, Ingo
    Dorscheid, Marita
    Schmeck, Hartmut
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 80 - 89
  • [2] Run-time Selection of Security Algorithms For Networked Devices
    Taddeo, Antonio Vincenzo
    Ferrante, Alberto
    Q2SWINET09: PROCEEDING OF THE FIFTH ACM INTERNATIONAL SYMPOSIUM ON QOS AND SECURITY FOR WIRELESS AND MOBILE NETWORKS, 2009, : 92 - 96
  • [3] Sensing user context and habits for run-time energy optimization
    Draa, Ismat Chaib
    Niar, Smail
    Tayeb, Jamel
    Grislin, Emmanuelle
    Desertot, Mikael
    EURASIP JOURNAL ON EMBEDDED SYSTEMS, 2016, Springer International Publishing (2017)
  • [4] Model Evolution by Run-Time Parameter Adaptation
    Epifani, Ilenia
    Ghezzi, Carlo
    Mirandola, Raffaela
    Tamburrelli, Giordano
    2009 31ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PROCEEDINGS, 2009, : 111 - +
  • [5] Practical diagnostic algorithms for run-time systems
    Wang, W
    Jaw, L
    2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 3476 - 3480
  • [6] ROX: Run-time Optimization of XQueries
    Kader, Riham Abdel
    Boncz, Peter
    Manegold, Stefan
    van Keulen, Maurice
    ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 615 - 626
  • [7] THE RUN-TIME EFFICIENCY OF PARALLEL ASYNCHRONOUS ALGORITHMS
    DUBOIS, M
    BRIGGS, FA
    IEEE TRANSACTIONS ON COMPUTERS, 1991, 40 (11) : 1260 - 1266
  • [8] Object detection in images: Run-time complexity and parameter selection of Support Vector Machines
    Ancona, N
    Cicirelli, G
    Stella, E
    Distante, A
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 426 - 429
  • [9] Run-Time Automatic Performance Tuning for Multicore Applications
    Karcher, Thomas
    Pankratius, Victor
    EURO-PAR 2011 PARALLEL PROCESSING, PT 1, 2011, 6852 : 3 - 14
  • [10] Time-stamping algorithms for parallelization of loops at run-time
    Xu, CZ
    Chaudhary, V
    11TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM, PROCEEDINGS, 1997, : 443 - 450