Carbon nanotube/carbon foam thermal-bridge enhancing solar energy conversion and storage of phase change materials

被引:0
|
作者
Li, Shu-Yao [1 ,2 ]
Yan, Ting [1 ,2 ]
Huo, Ying-Jie [1 ,2 ]
Pan, Wei-Guo [1 ,2 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy & Mech Engn, Shanghai 200090, Peoples R China
[2] Shanghai Noncarbon Energy Convers & Utilizat Inst, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Photothermal conversion; Solar energy; Thermal energy storage; Carbon foam; Carbon nanotube; COMPOSITES;
D O I
10.1016/j.mtsust.2024.100986
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Combining solar energy conversion with latent heat storage based on phase change materials (PCMs) has offered a promising way for expanding solar energy utilization. However, the application of PCMs for solar heat utilization is greatly limited by low thermal conductivity and poor sunlight absorption capacity. Carbon foam (CF) has excellent sunlight absorption properties, and carbon nanotube (CNT) have good thermal conductivity. In this study, CF/CNT porous material was prepared by self-assembly thermal-bridge between CF and CNT. CF/CNT was employed to a porous matrix for the encapsulation of octadecanol (OC), and then a composite photothermal PCM (CF/CNT/OC) was successfully fabricated. Compared with pure OC, the CF/CNT/OC has superior thermal conductivity capacity and excellent photothermal conversion performance. The thermal conductivity of CF/ CNT/OC89 reached 1.31 W m(- 1) K-1, and the photothermal conversion efficiency was 82.6 %. Meanwhile, the melting enthalpy of CF/CNT/OC98 reached up to 275.8 kJ center dot kg(- 1), exhibiting the excellent thermal storage properties. This functional composite PCM has broad application prospects in solar energy capture and storage, building energy saving and so on.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion
    Shen, Zhenghui
    Kwon, Soojin
    Lee, Hak Lae
    Toivakka, Martti
    Oh, Kyudeok
    CARBOHYDRATE POLYMERS, 2021, 273
  • [2] Novel composite phase change materials supported by oriented carbon fibers for solar thermal energy conversion and storage
    Zhang, Pengfei
    Wang, Yilin
    Qiu, Yu
    Yan, Hongjie
    Wang, Zhaolong
    Li, Qing
    APPLIED ENERGY, 2024, 358
  • [3] Highly graphitized carbon foam to construct phase change materials composites for multiple solar-thermal energy conversion
    Ahangar, Ali Mohseni
    Rahmani, Arya
    Maleki, Mahdi
    Ahmadi, Rouhollah
    Razavi, Seyed Hossein
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 277
  • [4] Carbon nanotube/nickel foam-mannitol phase change composite material for medium-temperature solar energy storage and conversion
    Wang, Min
    Wu, Zihua
    Liu, Anbang
    Wang, Yuanyuan
    Xie, Huaqing
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [5] Polypyrrole coated carbon nanotube aerogel composite phase change materials with enhanced thermal conductivity, high solar-/electro-thermal energy conversion and storage
    Tao, Zhang
    Zou, Hanying
    Li, Min
    Ren, Shibing
    Xu, Jianhang
    Lin, Jing
    Yang, Mu
    Feng, Yanhui
    Wang, Ge
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 629 : 632 - 643
  • [6] Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion
    Chen, Xiao
    Cheng, Piao
    Tang, Zhaodi
    Xu, Xiaoliang
    Gao, Hongyi
    Wang, Ge
    ADVANCED SCIENCE, 2021, 8 (09)
  • [7] Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 8051 - 8060
  • [8] Solar-thermal conversion and thermal energy storage of different phase change materials
    Eidgah, Emadoddin Erfani Farsi
    Ghafurian, Mohammad Mustafa
    Tavakoli, Ali
    Mortazavi, Ali
    Kianifar, Ali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (16) : 8051 - 8060
  • [9] Hybrid Microencapsulated Phase-Change Material and Carbon Nanotube Suspensions toward Solar Energy Conversion and Storage
    Li, Jun
    Jia, Lisi
    Li, Longjian
    Huang, Zehang
    Chen, Ying
    ENERGIES, 2020, 13 (17)
  • [10] Biomass Homogeneity Reinforced Carbon Aerogels Derived Functional Phase-Change Materials for Solar–Thermal Energy Conversion and Storage
    Qingfeng Zhang
    Tingfeng Xia
    Qihan Zhang
    Yucao Zhu
    Huanzhi Zhang
    Fen Xu
    Lixian Sun
    Xiaodong Wang
    Yongpeng Xia
    Xiangcheng Lin
    Hongliang Peng
    Pengru Huang
    Yongjin Zou
    Hailiang Chu
    Bin Li
    Energy & Environmental Materials, 2023, 6 (01) : 169 - 181