KDRSFL: A knowledge distillation resistance transfer framework for defending model inversion attacks in split federated learning

被引:0
|
作者
Chen, Renlong [1 ]
Xia, Hui [1 ]
Wang, Kai [2 ]
Xu, Shuo [1 ]
Zhang, Rui [1 ]
机构
[1] Ocean Univ China, Coll Comp Sci & Technol, Qingdao 266100, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Split federated learning; Knowledge distillation; Model inversion attacks; Privacy-Preserving Machine Learning; Resistance Transfer; INFORMATION LEAKAGE; PRIVACY; ROBUSTNESS;
D O I
10.1016/j.future.2024.107637
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Split Federated Learning (SFL) enables organizations such as healthcare to collaborate to improve model performance without sharing private data. However, SFL is currently susceptible to model inversion (MI) attacks, which create a serious problem of risk for private data leakage and loss of accuracy. Therefore, this paper proposes an innovative framework called Knowledge Distillation Resistance Transfer for Split Federated Learning (KDRSFL). The KDRSFL framework combines one-shot distillation techniques with adjustment strategies optimized for attackers, aiming to achieve knowledge distillation-based resistance transfer. KDRSFL enhances the classification accuracy of feature extractors and strengthens their resistance to adversarial attacks. First, a teacher model with strong resistance to MI attacks is constructed, and then this capability is transferred to the client models through knowledge distillation. Second, the defense of the client models is further strengthened through attacker-aware training. Finally, the client models achieve effective defense against MI through local training. Detailed experimental validation shows that KDRSFL performs well against MI attacks on the CIFAR100 dataset. KDRSFL achieved a reconstruction mean squared error (MSE) of 0.058 while maintaining a model accuracy of 67.4% for the VGG11 model. KDRSFL represents a 16% improvement in MI attack error rate over ResSFL, with only 0.1% accuracy loss.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] ResSFL: A Resistance Transfer Framework for Defending Model Inversion Attack in Split Federated Learning
    Li, Jingtao
    Rakin, Adnan Siraj
    Chen, Xing
    He, Zhezhi
    Fan, Deliang
    Chakrabarti, Chaitali
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10184 - 10192
  • [2] FMDL: Federated Mutual Distillation Learning for Defending Backdoor Attacks
    Sun, Hanqi
    Zhu, Wanquan
    Sun, Ziyu
    Cao, Mingsheng
    Liu, Wenbin
    ELECTRONICS, 2023, 12 (23)
  • [3] A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
    Su, Caiyu
    Wei, Jinri
    Lei, Yuan
    Li, Jiahui
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [4] Federated Split Learning via Mutual Knowledge Distillation
    Luo, Linjun
    Zhang, Xinglin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 2729 - 2741
  • [5] Defending against Adversarial Attacks in Federated Learning on Metric Learning Model
    Gu, Zhipin
    Shi, Jiangyong
    Yang, Yuexiang
    He, Liangzhong
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 197 - 206
  • [6] FedEqual: Defending Model Poisoning Attacks in Heterogeneous Federated Learning
    Chen, Ling-Yuan
    Chiu, Te-Chuan
    Pang, Ai-Chun
    Cheng, Li-Chen
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [7] Defending Against Data and Model Backdoor Attacks in Federated Learning
    Wang, Hao
    Mu, Xuejiao
    Wang, Dong
    Xu, Qiang
    Li, Kaiju
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39276 - 39294
  • [8] FLSAD: Defending Backdoor Attacks in Federated Learning via Self-Attention Distillation
    Chen, Lucheng
    Liu, Xiaoshuang
    Wang, Ailing
    Zhai, Weiwei
    Cheng, Xiang
    SYMMETRY-BASEL, 2024, 16 (11):
  • [9] An Empirical Study of the Inherent Resistance of Knowledge Distillation Based Federated Learning to Targeted Poisoning Attacks
    He, Weiyang
    Liu, Zizhen
    Chang, Chip-Hong
    2023 IEEE 32ND ASIAN TEST SYMPOSIUM, ATS, 2023, : 183 - 188
  • [10] Defending against gradient inversion attacks in federated learning via statistical machine unlearning
    Gao, Kun
    Zhu, Tianqing
    Ye, Dayong
    Zhou, Wanlei
    KNOWLEDGE-BASED SYSTEMS, 2024, 299