Concept drift detection on stream data for revising DBSCAN

被引:0
|
作者
Miyata Y. [1 ]
Ishikawa H. [2 ]
机构
[1] Hitachi, Ltd., Research and Development Group, 1-280, Higashi-koigakubo, Kokubunji, Tokyo
[2] Tokyo Metropolitan University, 6-6, Asahigaoka, Hino, Tokyo
关键词
Clustering; Concept drift; Data stream mining; DBSCAN; Power grid;
D O I
10.1541/ieejeiss.140.949
中图分类号
学科分类号
摘要
Data stream mining of IoT data can support operator to immediately isolate causes of equipment alarms. The challenge, however, is to keep their classifiers high purity (the data ratio with same proper class in a cluster) with concept drifting ascribed to differences between alarm models and entities. We propose to continuously update data class according to their distribution changes. Through evaluation, no purity deterioration was verified for oscillation condition data with a drifting rate of 1%. The result suggested that the method improves operator decision making. © 2020 The Institute of Electrical Engineers of Japan.
引用
收藏
页码:949 / 955
页数:6
相关论文
共 50 条
  • [1] Concept drift detection on stream data for revising DBSCAN
    Miyata, Yasushi
    Ishikawa, Hiroshi
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2021, 104 (01) : 87 - 94
  • [2] Concept Drift Detection for Evolving Stream Data
    Lee, Jeonghoon
    Lee, Yoon-Joon
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (11) : 2288 - 2292
  • [3] Detection of Concept Drift for Learning from Stream Data
    Lee, Jeonghoon
    Magoules, Frederic
    2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS), 2012, : 241 - 245
  • [4] Concept Drift Detection in Data Stream Mining : A literature review
    Agrahari, Supriya
    Singh, Anil Kumar
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9523 - 9540
  • [5] Novel Class Detection with Concept Drift in Data Stream - AhtNODE
    Gandhi, Jay
    Gandhi, Vaibhav
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2020, 11 (01) : 15 - 26
  • [6] Concept Drift Detection in Data Stream Clustering and its Application on Weather Data
    Namitha, K.
    Kumar, Santhosh G.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND ENVIRONMENTAL INFORMATION SYSTEMS, 2020, 11 (01) : 67 - 85
  • [7] Research on detection and integration classification based on concept drift of data stream
    Baoju Zhang
    Yidi Chen
    EURASIP Journal on Wireless Communications and Networking, 2019
  • [8] Disposition-Based Concept Drift Detection and Adaptation in Data Stream
    Supriya Agrahari
    Anil Kumar Singh
    Arabian Journal for Science and Engineering, 2022, 47 : 10605 - 10621
  • [9] Combining active learning with concept drift detection for data stream mining
    Krawczyk, Bartosz
    Pfahringer, Bernhard
    Wozniak, Michal
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2239 - 2244
  • [10] Bayesian Nonparametric Unsupervised Concept Drift Detection for Data Stream Mining
    Xuan, Junyu
    Lu, Jie
    Zhang, Guangquan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2021, 12 (01)