Multimodal Learning-Based Interval Type-2 Fuzzy Neural Network

被引:0
|
作者
Sun, Chenxuan [1 ]
Wu, Xiaolong [1 ]
Yang, Hongyan [1 ]
Han, Honggui [1 ]
Zhao, Dezheng [2 ]
机构
[1] Beijing Univ Technol, Minsit Educ, Fac Informat Technol, Engn Res Ctr Digital Community,Beijing Key Lab Com, Beijing 100124, Peoples R China
[2] Intelligence Technol CEC Co Ltd, Beijing 102209, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会; 北京市自然科学基金;
关键词
Nonlinear systems; Couplings; Feature extraction; Data mining; Approximation algorithms; Uncertainty; Neural networks; Coupling relationship; interval type-2 fuzzy neural network; multimodal information; parameterized modalities; DATA FUSION; PREDICTION; SYSTEM;
D O I
10.1109/TFUZZ.2024.3449325
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interval type-2 fuzzy neural network (IT2FNN) has extensive applications for modeling nonlinear systems with multidimensional structured data. However, the traditional IT2FNN based on the structured topology struggles to identify nonlinear systems using semistructured and unstructured data. To tackle this issue, a multimodal learning-based IT2FNN (ML-IT2FNN) is developed for joint learning of the multimodal data. First, an encoding layer with a multimodal perception strategy is designed to identify the multimodal information. The parameterized modalities are utilized to map the features of the semistructured and unstructured data into the structured spaces. Second, a multimodal representation mechanism is introduced to extract the features of multiple modalities from the structured spaces. In this mechanism, type-2 fuzzy sets with soft boundaries are used to intricate coupling relationships among modalities by adapting to the nuances of multimodal data. Third, a constrained hybrid learning algorithm, combining parallel and sequential updating frameworks, is presented to optimize the parameters of ML-IT2FNN. The type-2 fuzzy parameters and the coupling parameters with constraints are updated adaptively to facilitate the intramodal identification performance and cross-modal interaction performance. Finally, a series of examples in nonlinear systems are introduced to verify ML-IT2FNN. Empirical results demonstrate that ML-IT2FNN surpasses the cutting-edge approaches with accuracy.
引用
收藏
页码:6409 / 6423
页数:15
相关论文
共 50 条
  • [1] Antiforgetting Incremental Learning Algorithm for Interval Type-2 Fuzzy Neural Network
    Sun, Chenxuan
    Han, Honggui
    Wu, Xiaolong
    Yang, Hongyan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (04) : 1938 - 1950
  • [2] Vertical Handover Algorithm Based on Interval Type-2 Fuzzy Neural Network
    Ma B.
    Wang S.-S.
    Chen H.-B.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (05): : 928 - 935
  • [3] A Novel Structure of Actor-Critic Learning Based on an Interval Type-2 TSK Fuzzy Neural Network
    Khater, A. Aziz
    El-Nagar, Ahmad M.
    El-Bardini, Mohammad
    El-Rabaie, Nabila
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 3047 - 3061
  • [4] Intelligent Control Using an Interval Type-2 Fuzzy Neural Network with a Hybrid Learning Algorithm
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    Martinez, Luis G.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 893 - +
  • [5] Cooperative strategy for constructing interval type-2 fuzzy neural network
    Han, Hong-Gui
    Li, Jia-Ming
    Wu, Xiao-Long
    Qiao, Jun-Fei
    NEUROCOMPUTING, 2019, 365 : 249 - 260
  • [6] Design of interval type-2 fuzzy neural network system and application
    Wang, Tao
    Han, Chunyu
    Jin, Xuelian
    ICIC Express Letters, Part B: Applications, 2015, 6 (04): : 1041 - 1047
  • [7] A New Type of Fuzzy Membership Function Designed for Interval Type-2 Fuzzy Neural Network
    Wang J.
    Wang, Jiajun (wangjiajun@hdu.edu.cn), 2017, Science Press (43): : 1425 - 1433
  • [8] Hybrid learning algorithm for interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 157 - 162
  • [9] Fast Learning Method of Interval Type-2 Fuzzy Neural Networks
    Olczyk, Damian
    Markowska-Kaczmar, Urszula
    2014 14TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2014, : 134 - 139
  • [10] Dynamic Fuzzy Learning Rate in a Self-Evolving Interval Type-2 TSK Fuzzy Neural Network
    Tolue, Shirin Fartah
    Akbarzadeh-T., Mohammad-R.
    2013 13TH IRANIAN CONFERENCE ON FUZZY SYSTEMS (IFSC), 2013,