Intelligent hybrid approaches utilizing time series forecasting error for enhanced structural health monitoring

被引:1
|
作者
Yousefifard, Hossein Safar [1 ]
Amiri, Gholamreza Ghodrati [2 ]
Darvishan, Ehsan [3 ]
Avci, Onur [4 ]
机构
[1] Iran Univ Sci & Technol, Sch Civil Engn, Tehran, Iran
[2] Iran Univ Sci & Technol, Sch Civil Engn, Nat Disasters Prevent Res Ctr, Hengam St, Tehran 6765163, Iran
[3] Islamic Azad Univ, Dept Civil Engn, Roudehen Branch, Roudehen, Iran
[4] West Virginia Univ, Wadsworth Dept Civil & Environm Engn, 1306 Evansdale Dr, Morgantown, WV 26506 USA
关键词
Structural Health Monitoring; Damage Detection; LSTM; GRU; ICEEMDAN; Bayesian Optimization; EMPIRICAL MODE DECOMPOSITION; DAMAGE DETECTION; LSTM;
D O I
10.1016/j.ymssp.2024.112177
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Over the past decade, the growing importance of machine learning-based structural health monitoring (SHM) for early-stage damage detection has become evident. Time series forecasting, using deep learning, has emerged as a key focus, significantly contributing to improving damage detection, localization, and quantification processes. Researchers in SHM have conducted numerous studies utilizing neural networks based on time series forecasting, grounded in traditional methods. This study diverges from existing research by directly incorporating neural network prediction errors in time series for detecting, localizing, and quantifying damage. The proposed methods are well-suited for online structural monitoring. They eliminate the need for data classification methods and damage-sensitive feature extraction techniques by relying solely on training the neural network with data from structurally sound conditions. However, the testing process does require data from damaged conditions. To address the non-linear and non-stationary characteristics of the signals, the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) method is applied for signal processing. This method processes response signals (i.e., time series) from three well-known benchmark structures: the University of Central Florida structure, the Qatar University Grandstand Simulator, and the Z24 Bridge. Subsequently, the first intrinsic mode function (IMF) obtained from signal decomposition is independently input into Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks for time series prediction. Optimal parameter values for the LSTM and GRU neural networks are chosen using the Bayesian Optimization (BO) algorithm before the prediction process. By introducing three indices-Statistical Distance Function (SDF), error index, and accuracy index-the evaluation not only emphasizes the accuracy of the methods but also explores the localization and quantification of damage. The results demonstrate that both ICEEMDAN-BOLSTM-SDF and ICEEMDAN-BO-GRU-SDF methods have successfully achieved accurate detection, localization, and quantification without the need for data classification and damage-sensitive feature extraction methods, and merely by utilizing data from healthy states for neural network training.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Research on Hybrid Forecasting Method with Time Series and Intelligent Error Modification
    Zhou, Sen Xin
    Wang, Fu Qin
    Li, Hao
    Sheng, Peng Fei
    EMERGING RESEARCH IN ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, 2012, 315 : 334 - 341
  • [2] Weighted sequential hybrid approaches for time series forecasting
    Hajirahimi, Zahra
    Khashei, Mehdi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 531
  • [3] A hybrid intelligent system for financial time-series forecasting
    Thomaidis, Nikos S.
    Dounias, George
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2008, 16 (04): : 193 - 213
  • [4] A hybrid intelligent system for financial time-series forecasting
    Dept. of Financial and Management Engineering, School of Business Studies, University of the Aegean, 31 Fostini Str, GR-821 00, Chios, Greece
    Eng. Intell. Syst., 2008, 4 (193-213):
  • [5] A hybrid optimized error correction system for time series forecasting
    Lorenzato de Oliveira, Joao Fausto
    Santos Pacifico, Luciano Demetrio
    Gomes de Mattos Neto, Paulo Salgado
    Sposito Barreiros, Emanoel Francisco
    de Oliveira Rodrigues, Cleyton Mario
    de Almeida Filho, Adauto Trigueiro
    APPLIED SOFT COMPUTING, 2020, 87
  • [6] Intelligent forecasting for financial time series subject to structural changes
    Ahn, Jae Joon
    Lee, Suk Jun
    Oh, Kyong Joo
    Kim, Tae Yoon
    INTELLIGENT DATA ANALYSIS, 2009, 13 (01) : 151 - 163
  • [7] Wavelet enhanced analytical and evolutionary approaches to time series forecasting
    Kozlowski, Bartosz
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 49 - 57
  • [8] Hybrid Approaches in Financial Time Series Forecasting: A Stock Market Application
    Bulut, Canberk
    Hudaverdi, Burcu
    EKOIST-JOURNAL OF ECONOMETRICS AND STATISTICS, 2022, (37): : 53 - 68
  • [9] Intelligent system for time series forecasting
    Proskuryakov, A.
    XII INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2016, (INTELS 2016), 2017, 103 : 363 - 369
  • [10] FORECASTING MONTHLY COTTON PRICE - STRUCTURAL AND TIME-SERIES APPROACHES
    CHEN, DT
    BESSLER, DA
    INTERNATIONAL JOURNAL OF FORECASTING, 1990, 6 (01) : 103 - 113