Discovering frequent subtrees from XML data using neural networks

被引:0
|
作者
College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China [1 ]
机构
来源
Wuhan Univ J Nat Sci | 2006年 / 1卷 / 117-121期
关键词
D O I
10.1007/BF02831715
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [2] Discovering frequent agreement subtrees from phylogenetic data
    Zhang, Sen
    Wang, Jason T. L.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (01) : 68 - 82
  • [3] A novel method for mining frequent subtrees from XML data
    Zhang, WS
    Liu, DX
    Zhang, JP
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2004, PROCEEDINGS, 2004, 3177 : 300 - 305
  • [4] Clustering XML Documents Using Frequent Subtrees
    Kutty, Sangeetha
    Tran, Tien
    Nayak, Richi
    Li, Yuefeng
    ADVANCES IN FOCUSED RETRIEVAL, 2009, 5631 : 436 - 445
  • [5] Extended VSM for XML Document Classification Using Frequent Subtrees
    Yang, Jianwu
    Wang, Songlin
    FOCUSED RETRIEVAL AND EVALUATION, 2010, 6203 : 441 - 448
  • [6] Mining frequent rooted subtrees in XML data with Me-tree
    Zhang, WS
    Liu, DX
    Zhang, JP
    2004 IEEE SYSTEMS & INFORMATION ENGINEERING DESIGN SYMPOSIUM, 2004, : 209 - 214
  • [7] EXiT-B: A new approach for extracting maximal frequent subtrees from XML data
    Paik, J
    Won, D
    Fotouhi, F
    Kim, UM
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING IDEAL 2005, PROCEEDINGS, 2005, 3578 : 1 - 8
  • [8] Essential subtrees and XML data
    Shtrakov, SV
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIV, PROCEEDINGS: COMPUTER SCIENCE, ENGINEERING AND APPLICATIONS, 2003, : 465 - 470
  • [9] Clustering XML Documents Using Closed Frequent Subtrees: A Structural Similarity Approach
    Kutty, Sangeetha
    Tran, Tien
    Nayak, Richi
    Li, Yuefeng
    FOCUSED ACCESS TO XML DOCUMENTS, 2008, 4862 : 183 - 194
  • [10] Simple yet efficient approach for maximal frequent subtrees extraction from a collection of XML documents
    Paik, Juryon
    Kim, Ung Mo
    WEB INFORMATION SYSTEMS - WISE 2006 WORKSHOPS, PROCEEDINGS, 2006, 4256 : 94 - 103