Multi-threshold deep metric learning for facial expression recognition

被引:0
|
作者
Yang, Wenwu [1 ]
Yu, Jinyi [1 ]
Chen, Tuo [1 ]
Liu, Zhenguang [2 ]
Wang, Xun [1 ]
Shen, Jianbing [3 ]
机构
[1] Zhejiang GongShang Univ, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Hangzhou 310012, Peoples R China
[3] Univ Macau, Taipa 999078, Macau, Peoples R China
关键词
Facial expression recognition; Triplet loss learning; Multiple thresholds;
D O I
10.1016/j.patcog.2024.110711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature representations generated through triplet-based deep metric learning offer significant advantages for facial expression recognition (FER). Each threshold in triplet loss inherently shapes a distinct distribution of inter-class variations, leading to unique representations of expression features. Nonetheless, pinpointing the optimal threshold for triplet loss presents a formidable challenge, as the ideal threshold varies not only across different datasets but also among classes within the same dataset. In this paper, we propose a novel multi-threshold deep metric learning approach that bypasses the complex process of threshold validation and markedly improves the effectiveness in creating expression feature representations. Instead of choosing a single optimal threshold from a valid range, we comprehensively sample thresholds throughout this range, which ensures that the representation characteristics exhibited by the thresholds within this spectrum are fully captured and utilized for enhancing FER. Specifically, we segment the embedding layer of the deep metric learning network into multiple slices, with each slice representing a specific threshold sample. We subsequently train these embedding slices in an end-to-end fashion, applying triplet loss at its associated threshold to each slice, which results in a collection of unique expression features corresponding to each embedding slice. Moreover, we identify the issue that the traditional triplet loss may struggle to converge when employing the widely-used Batch Hard strategy for mining informative triplets, and introduce a novel loss termed dual triplet loss to address it. Extensive evaluations demonstrate the superior performance of the proposed approach on both posed and spontaneous facial expression datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Facial Expression Recognition by Jointly Partial Image and Deep Metric Learning
    Yu, Naigong
    Bai, Deguo
    IEEE ACCESS, 2020, 8 (08): : 4700 - 4707
  • [2] Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition
    Liu, Xiaofeng
    Kumar, B. V. K. Vijaya
    You, Jane
    Jia, Ping
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 522 - 531
  • [3] Collaborative discriminative multi-metric learning for facial expression recognition in video
    Yan, Haibin
    PATTERN RECOGNITION, 2018, 75 : 33 - 40
  • [4] Discriminative deep multi-task learning for facial expression recognition
    Zheng, Hao
    Wang, Ruili
    Ji, Wanting
    Zong, Ming
    Wong, Wai Keung
    Lai, Zhihui
    Lv, Hexin
    INFORMATION SCIENCES, 2020, 533 : 60 - 71
  • [5] Adaptive discriminative metric learning for facial expression recognition
    Yan, H.
    Ang, M. H., Jr.
    Poo, A. N.
    IET BIOMETRICS, 2012, 1 (03) : 160 - 167
  • [6] Barycentric Representation and Metric Learning for Facial Expression Recognition
    Kacem, Anis
    Daoudi, Mohamed
    Alvarez-Paiva, Juan-Carlos
    PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 443 - 447
  • [7] Histogram distance metric learning for facial expression recognition
    Sadeghi, Hamid
    Raie, Abolghasem-A.
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 152 - 165
  • [8] Facial Expression Recognition Using Deep Learning
    Shehu, Harisu Abdullahi
    Sharif, Md Haidar
    Uyaver, Sahin
    FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020), 2021, 2334
  • [9] Facial expression recognition based on deep learning
    Ge, Huilin
    Zhu, Zhiyu
    Dai, Yuewei
    Wang, Biao
    Wu, Xuedong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 215
  • [10] Facial Expression Recognition via Deep Learning
    Fathallah, Abir
    Abdi, Lotfi
    Douik, Ali
    2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 745 - 750