Federated Learning for Human Activity Recognition: Overview, Advances, and Challenges

被引:0
|
作者
Aouedi, Ons [1 ]
Sacco, Alessio [2 ]
Khan, Latif U. [3 ]
Nguyen, Dinh C. [4 ]
Guizani, Mohsen [3 ]
机构
[1] Univ Luxembourg, SnT, L-1359 Luxembourg, Luxembourg
[2] Politecn Torino, DAUIN, I-10129 Turin, Italy
[3] Mohamed bin Zayed Univ Artificial Intelligence, Machine Learning Dept, Abu Dhabi, U Arab Emirates
[4] Univ Alabama Huntsville, Dept Elect & Comp Engn, Huntsville, AL USA
关键词
Surveys; Human activity recognition; Training; Data privacy; Data models; Computer architecture; Privacy; Federated learning; Convergence; Monitoring; machine learning; human activity recognition; data privacy; AGGREGATION; PRIVACY; FRAMEWORK;
D O I
10.1109/OJCOMS.2024.3484228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human Activity Recognition (HAR) has seen remarkable advances in recent years, driven by the widespread use of wearable devices and the increasing demand for personalized healthcare and activity tracking. Federated Learning (FL) is a promising paradigm for HAR that enables the collaborative training of machine learning models on decentralized devices while preserving data privacy. It improves not only data privacy but also training efficiency as it utilizes the computing power and data of potentially millions of smart devices for parallel training. In addition, it helps end-user devices avoid sending users' private data to the cloud, eliminates the need for a network connection, and saves the latency of back-and-forth communication. FL also offers significant advantages for communication by reducing the amount of data transmitted over the network, alleviating network congestion and reducing communication costs. By distributing the training process across devices, FL minimizes the need for centralized data storage and processing, leading to more scalable and resilient systems. This paper provides a comprehensive survey of the integration of FL into HAR applications. Unlike existing reviews, this paper uniquely focuses on the intersection of FL and HAR, providing an in-depth analysis of recent advances and their practical implications. We explore key advances in FL-based HAR methodologies, including model architectures, optimization techniques, and different applications. Furthermore, we highlight the major challenges and future research questions in this domain, such as model personalization and robustness, privacy concerns, concept drift, and the limited capacity of edge devices.
引用
收藏
页码:7341 / 7367
页数:27
相关论文
共 50 条
  • [1] Human Activity Recognition Using Federated Learning
    Sozinov, Konstantin
    Vlassov, Vladimir
    Girdzijauskas, Sarunas
    2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS, 2018, : 1103 - 1111
  • [2] RETRACTED ARTICLE: Human activity recognition with deep learning: overview, challenges and possibilities
    Pranjal Kumar
    Siddhartha Chauhan
    CCF Transactions on Pervasive Computing and Interaction, 2021, 3 : 339 - 339
  • [3] A Federated Learning Approach for Distributed Human Activity Recognition
    Concone, Federico
    Ferdico, Cedric
    Lo Re, Giuseppe
    Morana, Marco
    2022 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2022), 2022, : 269 - 274
  • [4] Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges, and Opportunities
    Chen, Kaixuan
    Zhang, Dalin
    Yao, Lina
    Guo, Bin
    Yu, Zhiwen
    Liu, Yunhao
    ACM COMPUTING SURVEYS, 2021, 54 (04)
  • [5] Vertical Federated Learning: Concepts, Advances, and Challenges
    Liu, Yang
    Kang, Yan
    Zou, Tianyuan
    Pu, Yanhong
    He, Yuanqin
    Ye, Xiaozhou
    Ouyang, Ye
    Zhang, Ya-Qin
    Yang, Qiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3615 - 3634
  • [6] Enhancing Human Activity Recognition With FedPA: Focusing on Non-IID Data Challenges in Federated Learning
    Wen, Xiaoxu
    Wang, Yan
    Yuan, Menghao
    Geng, Yingrui
    Yu, Hongnian
    Zheng, Ge
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 39230 - 39242
  • [7] Human Activity Recognition with Smart Watches Using Federated Learning
    Gonul, Tansel
    Incel, Ozlem Durmaz
    Alptekin, Gulfem Isiklar
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 : 77 - 85
  • [8] A federated learning system with enhanced feature extraction for human activity recognition
    Xiao, Zhiwen
    Xu, Xin
    Xing, Huanlai
    Song, Fuhong
    Wang, Xinhan
    Zhao, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2021, 229
  • [9] Edge human activity recognition using federated learning on constrained devices
    Trotta, Angelo
    Montori, Federico
    Ciabattini, Leonardo
    Billia, Giulio
    Bononi, Luciano
    Di Felice, Marco
    PERVASIVE AND MOBILE COMPUTING, 2024, 104
  • [10] Evaluation and comparison of federated learning algorithms for Human Activity Recognition on smartphones
    Ek S.
    Portet F.
    Lalanda P.
    Vega G.
    Pervasive and Mobile Computing, 2022, 87