Visible light-driven photocatalysis often struggles with fast recombination of photogenerated electron-hole pair and unsatisfactory degradation efficiency of hazardous micropollutants, such as antibiotics. Constructing an effective heterojunction can address these challenges. In this study, a novel S-scheme MIL-53(Fe)/FeOCl heterojunction composite was synthesized using a hydrothermal method. Factors influencing oxytetracycline (OTC) removal and the underlying reaction mechanism were investigated. The MF-10 composite demonstrated a remarkable removal efficiency of 90 %, significantly higher than that of MIL-53(Fe), which was 54 %. Even after six cycles, the degradation efficiency only decreased by 8 %, and the composition of MF-10 remained unchanged, indicating excellent durability. The photocatalytic process involves crucial reactive species such as & sdot; OH, SO center dot-, 4 O center dot- 2 , and h+. The heterojunction construction extends the absorption range of visible light, and the internal electric field enhances the separation of photogenerated electron-hole pairs while maintaining robust electron and hole activity. Additionally, photogenerated electrons facilitate the Fe(II)/Fe(III) cycling, resulting in the production of more reactive species for OTC degradation. This work introduces a novel approach to enhance the activity of photocatalysts and provides valuable insights into the design of peroxydisulfate activators.