Multi-Prior Driven Network for RGB-D Salient Object Detection

被引:7
|
作者
Zhang, Xiaoqin [1 ]
Xu, Yuewang [1 ]
Wang, Tao [2 ]
Liao, Tangfei [1 ]
机构
[1] Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image edge detection; Pipelines; Object detection; Task analysis; Fuses; Decoding; Salient object detection; multi-prior driven; prior information aggregation; salient edge capture;
D O I
10.1109/TCSVT.2023.3268217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most existing RGB-D salient object detection (SOD) methods rely on high-quality depth images. However, their performance is limited when processing low-quality depth maps. This paper exploits more complementary image priors to guide the model to learn on variable depth maps, and a novel multi-prior driven network called MPDNet is proposed for RGB-D SOD. MPDNet utilizes four processing pipelines to process RGB images and other priors, which include an RGB image processing pipeline, a depth map processing pipeline, a fine-grained and gradient prior processing pipeline, and an edge learning pipeline. Specifically, fine-grained and gradient priors are input to the same processing pipeline. For the depth maps, fine-grained and gradient priors, a prior channel attention module utilizes the channel attention mechanism to filter noises and highlights the salient cues. The RGB image processing pipeline uses a multi-feature progressive enhancement module to fuse and enhance features from depth maps. And a multi-feature prediction decoder decodes initial salient masks. In the edge learning pipeline, edge prior serves as an edge label and is captured by an edge capture module. Finally, the clear salient masks are obtained by fusing the salient information from the four pipelines. The experimental results on six benchmarks indicate that the proposed method outperforms thirteen state-of-the-art methods in six evaluation metrics.
引用
收藏
页码:9209 / 9222
页数:14
相关论文
共 50 条
  • [1] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [2] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [3] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [4] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [5] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [6] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [7] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [8] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780
  • [9] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [10] Progressive multi-scale fusion network for RGB-D salient object detection
    Ren, Guangyu
    Xie, Yanchun
    Dai, Tianhong
    Stathaki, Tania
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 223