MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath

被引:0
|
作者
Kauer, Thomas [1 ]
Sehring, Jannik [1 ]
Schmid, Kai [1 ]
Bartkuhn, Marek [2 ,3 ]
Wiebach, Benedikt [2 ,3 ]
Crnkovic, Slaven [2 ,4 ]
Kwapiszewska, Grazyna [2 ,4 ]
Acker, Till [1 ]
Amsel, Daniel [1 ]
机构
[1] Justus Liebig Univ Giessen, Inst Neuropathol, Arndtstr 16, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Inst Lung Hlth, Aulweg 128, D-35392 Giessen, Germany
[3] Justus Liebig Univ Giessen, Biomed Informat & Syst Med, Aulweg 128, D-35392 Giessen, Germany
[4] Med Univ Graz, Inst Biophys, Neue Stiftingtalstr 6, A-8010 Graz, Austria
关键词
whole slide image; qupath; artificial intelligence; segmentation; digital pathology;
D O I
10.3390/jimaging10110292
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The emerging usage of digitalized histopathological images is leading to a novel possibility for data analysis. With the help of artificial intelligence algorithms, it is now possible to detect certain structures and morphological features on whole slide images automatically. This enables algorithms to count, measure, or evaluate those areas when trained properly. To achieve suitable training, datasets must be annotated and curated by users in programs like QuPath. The extraction of this data for artificial intelligence algorithms is still rather tedious and needs to be saved on a local hard drive. We developed a toolkit for integration into existing pipelines and tools, like U-net, for the on-the-fly extraction of annotation tiles from existing QuPath projects. The tiles can be directly used as input for artificial intelligence algorithms, and the results are directly transferred back to QuPath for visual inspection. With the toolkit, we created a convenient way to incorporate QuPath into existing AI workflows.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] UNFOLD: A Memory-Efficient Speech Recognizer Using On-The-Fly WFST Composition
    Yazdani, Reza
    Arnau, Jose-Maria
    Gonzalez, Antonio
    50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, : 69 - 81
  • [2] Memory-Efficient On-the-Fly Voxelization and Rendering of Particle Data
    Zirr, Tobias
    Dachsbacher, Carsten
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (02) : 1155 - 1166
  • [3] A Memory-Efficient IDMA Architecture Based on On-the-Fly Despreading
    Kong, Byeong Yong
    Park, In-Cheol
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (11) : 3327 - 3337
  • [4] Using Image Morphing for Memory-Efficient Impostor Rendering on GPU
    Yuksel, Kamer Ali
    Ercil, Aytul
    Yucebilgin, Alp
    Balcisoy, Selim
    2011 INTERNATIONAL CONFERENCE ON CYBERWORLDS, 2011, : 197 - 202
  • [5] Reversible GANs for Memory-efficient Image-to-Image Translation
    van der Ouderaa, Tycho F. A.
    Worrall, Daniel E.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4715 - 4723
  • [6] Memory-Efficient Assembly Using Flye
    Freire, Borja
    Ladra, Susana
    Parama, Jose R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3564 - 3577
  • [7] Optimizing memory-efficient multimodal networks for image classification using differential evolution
    Hielscher, T.
    Hadigheh, S. A.
    APPLIED SOFT COMPUTING, 2025, 171
  • [8] Memory-efficient spatial prediction image compression scheme
    Nandi, Anil V.
    Patnaik, L. M.
    Banakar, R. M.
    IMAGE AND VISION COMPUTING, 2007, 25 (06) : 899 - 906
  • [9] Memory-Efficient Image Databases for Mobile Visual Search
    Chen, David M.
    Girod, Bernd
    IEEE MULTIMEDIA, 2014, 21 (01) : 14 - 23
  • [10] Early burst detection for memory-efficient image retrieval
    Shi, Miaojing
    Avrithis, Yannis
    Jegou, Herve
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 605 - 613