Applications of synthetic biology in medicine and energy

被引:0
|
作者
Liu D. [1 ]
Du J. [1 ]
Zhao G. [1 ]
Yuan Y. [1 ]
机构
[1] Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University
来源
Huagong Xuebao/CIESC Journal | 2011年 / 62卷 / 09期
关键词
Energy; Gene module; Medicine; Synthetic biology; Synthetic biotechnology;
D O I
10.3969/j.issn.0438-1157.2011.09.002
中图分类号
学科分类号
摘要
Synthetic biology is a new field under the guidance of engineering, which aims to redesign and rebuild natural biological systems, and meanwhile, design and synthesize new biological part, module and system. The advent of synthetic biology represents the tendency of natural science. Some marked achievements have been made in the areas of medicine and energy via synthetic biology methods. On one hand, novel synthesizing pathways have been successfully constructed in engineered cells to produce amorphadiene and taxadiene, which are precursors of antimalarial drug artemisinin and anticarcinogen taxol respectively. On the other hand, the constructions of fatty acid ester, fatty alcohol and higher alcohols synthesizing pathways have also been realized. In addition, several related synthetic bio-techniques accelerate reconstruction and evolution of engineered cells, which would offer convenient tools to construct novel functional cells for the purpose of bio-based manufacture. © All Rights Reserved.
引用
收藏
页码:2391 / 2397
页数:6
相关论文
共 22 条
  • [1] Martin V.J., Pitera D.J., Withers S.T., Newman J.D., Keasling J.D., Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nat. Biotechnol., 21, pp. 796-802, (2003)
  • [2] Ro D.K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., Chang M.C., Withers S.T., Shiba Y., Sarpong R., Keasling J.D., Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature, 440, pp. 940-943, (2006)
  • [3] Dueber J.E., Wu G.C., Malmirchegini G.R., Moon T.S., Petzold C.J., Ullal A.V., Prather K.L., Keasling J.D., Synthetic protein scaffolds provide modular control over metabolic flux, Nat. Biotechnol., 27, pp. 753-759, (2009)
  • [4] Tsuruta H., Paddon C.J., Lenihan J.R., Horning T., Anthony L.C., Regentin R., Keasling J.D., Renninger N.S., Newman J.D., High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli, PLoS One, 4, 2, (2009)
  • [5] Ajikumar P.K., Xiao W.H., Tyo K.E., Wang Y., Simeon F., Leonard E., Mucha O., Phon T.H., Pfeifer B., Stephanopoulos G., Isoprenoid pathway optimization by a multivariate-modular approach for Taxol precursor overproduction in Escherichia coli, Science, 330, pp. 70-74, (2010)
  • [6] Rolli V., Gallwitz M., Wossning T., Flemming A., Schamel W.W., Zurn C., Reth M., Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop, Mol. Cell, 10, pp. 1057-1069, (2002)
  • [7] Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J., A common mechanism of cellular death induced by bactericidal antibiotics, Cell, 130, pp. 797-810, (2007)
  • [8] Weber W., Schoenmakers R., Keller B., Gitzinger M., Grau T., Daoud-El Baba M., Sander P., Fussenegger M., A synthetic mammalian gene circuit reveals antituberculosis compounds, Proc. Natl. Acad. Sci. USA, 105, pp. 9994-9998, (2008)
  • [9] Lu T.K., Collins J.J., Dispersing biofilms with engineered enzymatic bacteriophage, Proc. Natl. Acad. Sci. USA, 104, pp. 11197-11202, (2007)
  • [10] Lu T.K., Collins J.J., Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy, Proc. Natl. Acad. Sci. USA, 106, pp. 4629-4634, (2009)