Magnetic flocculation;
Magnetic nanoparticles;
Microalgae;
Machine learning;
Shapley additive explanation;
Ensemble algorithm;
CHLORELLA-VULGARIS;
BIOMASS;
FLOCCULANT;
NANOCOMPOSITES;
DISRUPTION;
SEPARATION;
REMOVAL;
D O I:
10.1016/j.jece.2025.115406
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The emerging magnetic flocculation (or harvesting) with magnetic nanoparticles (MNPs) is a promising technology for microalgae dewatering. However, unearthing MNPs with high harvesting efficiency (HE) toward diverse microalgae relies on laborious experiments so far, a robust approach therefore is urgently needed to preevaluate the harvesting power of MNPs. Here, we predicted HE using machine learning algorithms across 1151 data points, in which the properties of MNPs and microalgae, and conditions of magnetic flocculation were comprehensively considered. Among 8 machine learning algorithms, the optimal XGBoost model showcased the best predictive performance with a high coefficient of determination (0.932), a low mean square error (6.96 %), and a low mean absolute error (4.17 %) on the test dataset. The model was also verified by batch experiments, demonstrating its ability to estimate HE accurately. Further, the Shapley additive explanations approach was used to decipher how the model made predictions from local and global perspectives, and these interpretations may offer guidelines for both the rational design of MNPS and the selection of microalgae species in magnetic flocculation. This work highlights the introduction of machine learning models to predict the harvesting ability of diverse MNPs toward microalgae, paving the way for the utilization of microalgal biomass.
机构:
Univ Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
Sokoto State Univ, Fac Sci, Dept Microbiol, Birnin Kebbi Rd 852101, Sokoto, NigeriaUniv Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
Usman, Hizbullahi M.
Kamaroddin, Mohd Farizal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
Kamaroddin, Mohd Farizal
Sani, Mohd Helmi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
Sani, Mohd Helmi
Malek, Nik Ahmad Nizam Nik
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
Univ Teknol Malaysia, Ctr Sustainable Nanomat CSNano, Skudai 81310, Johor, MalaysiaUniv Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
Malek, Nik Ahmad Nizam Nik
Omoregie, Armstrong Ighodalo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sarawak, Ctr Borneo Regionalism & Conservat, 1 Jalan Univ, Sibu 96000, Sarawak, MalaysiaUniv Teknol Malaysia, Fac Sci, Dept Biosci, Skudai 81310, Johor, Malaysia
机构:
Queen Mary Univ London, Digital Environm Res Inst, London, England
Queen Mary Univ London, Sch Biol & Behav Sci, London, EnglandQueen Mary Univ London, Digital Environm Res Inst, London, England
Gray, Callum
Chitnavis, Samir
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Digital Environm Res Inst, London, England
Queen Mary Univ London, Sch Biol & Behav Sci, London, EnglandQueen Mary Univ London, Digital Environm Res Inst, London, England
Chitnavis, Samir
Buja, Tamara
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Digital Environm Res Inst, London, England
Queen Mary Univ London, Sch Biol & Behav Sci, London, EnglandQueen Mary Univ London, Digital Environm Res Inst, London, England
Buja, Tamara
Duffy, Christopher D. P.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Digital Environm Res Inst, London, England
Queen Mary Univ London, Sch Biol & Behav Sci, London, EnglandQueen Mary Univ London, Digital Environm Res Inst, London, England