Assessment of the self-healing capacity of PVA fiber-reinforced composites by chloride permeability and stiffness recovery

被引:0
|
作者
Buegger, Urs [1 ]
Carvalho, Eliane Betania [2 ]
Jaenicke, Ralf [1 ]
Lima, Thamara Tofeti [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Appl Mech, Braunschweig, Germany
[2] Univ Fed Uberlandia, Dept Civil Engn, Uberlandia, Brazil
来源
FRONTIERS IN MATERIALS | 2024年 / 11卷
关键词
durability; self-healing; crack sealing; chloride penetration; PVA fibers; stiffness recovery; ENGINEERED CEMENTITIOUS COMPOSITES; CONCRETE STRUCTURES; FLY-ASH; DURABILITY; PENETRATION; ORIENTATION;
D O I
10.3389/fmats.2024.1443216
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the intrinsic ability of PVA fiber-reinforced cementitious composites to re-establish the durability properties of the uncracked state. Comparative chloride penetration tests are used as a direct measure to quantify the effect of self-healing on the chloride penetration resistance after cracking. Two different composites with cement to fly ash ratios of 1:1.5 and 1:2.0 were studied under the influence of healing periods of up to 28 days. After inducing cracks between 100 and 120 mu m, samples were exposed to chlorides for 72 h and the resulting chloride penetration depth was compared to the unhealed state. Based on this procedure, a durability recovery index was proposed to quantify the material's ability to re-establish its function as a protective layer after cracking. Results show that after 14 days of self-healing, chloride penetration through cracks was reduced between 81% and 99%. An extended healing period of 28 days leads to further reduction of the penetration depth to 84%-100%, indicating that most of the reaction takes place within the first 14 days of healing. While the stiffness recovery analysis showed that increasing cement content by 20% correlated with the formation of stronger healing products, no significant difference was found regarding crack closure.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Self-healing fiber-reinforced polymer composites
    Bond, Ian P.
    Trask, Richard S.
    Williams, Hugo R.
    MRS BULLETIN, 2008, 33 (08) : 770 - 774
  • [2] Self-Healing Fiber-Reinforced Polymer Composites
    Ian P. Bond
    Richard S. Trask
    Hugo R. Williams
    MRS Bulletin, 2008, 33 : 770 - 774
  • [3] Self-healing of impact damage in fiber-reinforced composites
    Hart, Kevin R.
    Wetzel, Eric D.
    Sottos, Nancy R.
    White, Scott R.
    COMPOSITES PART B-ENGINEERING, 2019, 173
  • [4] Progress in Self-Healing Fiber-Reinforced Polymer Composites
    Cohades, Amael
    Branfoot, Callum
    Rae, Steven
    Bond, Ian
    Michaud, Veronique
    ADVANCED MATERIALS INTERFACES, 2018, 5 (17):
  • [5] Self-Healing Capability of Fiber-Reinforced Cementitious Composites for Recovery of Watertightness and Mechanical Properties
    Nishiwaki, Tomoya
    Kwon, Sukmin
    Homma, Daisuke
    Yamada, Makoto
    Mihashi, Hirozo
    MATERIALS, 2014, 7 (03): : 2141 - 2154
  • [6] Self-healing capacity of fiber-reinforced calcium phosphate cements
    Boehm, Anne V.
    Meininger, Susanne
    Gbureck, Uwe
    Mueller, Frank A.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Self-healing capacity of fiber-reinforced calcium phosphate cements
    Anne V. Boehm
    Susanne Meininger
    Uwe Gbureck
    Frank A. Müller
    Scientific Reports, 10
  • [8] Repetitive self-healing capacity of fiber-reinforced concrete with crystalline additive
    Cuenca, E.
    Tejedor, A.
    Ferrara, L.
    V CONGRESO IBEROAMERICANO DE HORMIGON AUTOCOMPACTANTE Y HORMIGONES ESPECIALES, 2018, : 405 - 414
  • [9] Intrinsic and extrinsic self-healing fiber-reinforced polymer composites: A review
    Wang, Juntao
    Tang, Jun
    Chen, Dingding
    Xing, Suli
    Liu, Xuanyi
    Hao, Jingye
    POLYMER COMPOSITES, 2023, 44 (10) : 6304 - 6323
  • [10] Self-healing capacity of ultra-rapid-hardening fiber-reinforced cementitious composites under tension
    Chun, Booki
    Oh, Taekgeun
    Choi, Hong-Joon
    Lee, Seung Kyun
    Banthia, Nemkumar
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 385