Battery management systems for improving battery efficiency in electric vehicles

被引:0
|
作者
Liu Y.-C. [1 ]
机构
[1] Department of Electrical Engineering, Kao Yuan University, Lujhu Township, Kaohsiung County 821, No.1821, Jhongshan Rd.
关键词
Battery efficiency; Bi-directional dc-dc converter; Lead-acid battery; Lithium-ion battery;
D O I
10.3390/wevj4020351
中图分类号
学科分类号
摘要
Battery cost and battery capacity are key factors to determine whether or not electric vehicles would be used widely. Having a high energy density, lithium-ion battery can improve the mileage range of electric vehicles, yet the battery cost remains high. Although lead-acid battery has lower energy density than that of lithium-ion batteries, lead-acid battery cost less. Moreover, lithium-ion battery features an excellent discharge characteristic, whereas load current significantly impacts the capacity of lead-acid battery. This paper proposes a novel scheme to improve the efficiency of electric vehicle battery. In addition to connecting lead-acid battery with lithium-ion battery in parallel to the power supply, the proposed method combines their discharge characteristics to optimize the power management in order to improve the efficiency of battery and lower the cost of electric vehicle battery. The experimental result demonstrates that the available capacity can improve 30~50% of the rated capacity of the lead-acid battery. © 2010 WEVA.
引用
收藏
页码:351 / 357
页数:6
相关论文
共 50 条
  • [1] Batteries and Battery Management Systems for Electric Vehicles
    Brandl, M.
    Gall, H.
    Wenger, M.
    Lorentz, V.
    Giegerich, M.
    Baronti, F.
    Fantechi, G.
    Fanucci, L.
    Roncella, R.
    Saletti, R.
    Saponara, S.
    Thaler, A.
    Cifrain, M.
    Prochazka, W.
    DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2012), 2012, : 971 - 976
  • [2] Battery Management Systems in Electric and Hybrid Vehicles
    Xing, Yinjiao
    Ma, Eden W. M.
    Tsui, Kwok L.
    Pecht, Michael
    ENERGIES, 2011, 4 (11) : 1840 - 1857
  • [3] Battery technology and battery management in electric vehicles
    Hrach, D.
    Cifrain, M.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2011, 128 (1-2): : 16 - 21
  • [4] Design of Thermal Management Systems for Battery Electric Vehicles
    Reiter, Christoph
    Wassiliadis, Nikolaos
    Lienkamp, Markus
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,
  • [5] Driving Electric Vehicles Into the Future With Battery Management Systems
    Singh S.
    More V.
    Batheri R.
    IEEE Engineering Management Review, 2022, 50 (03): : 157 - 161
  • [6] Review of battery thermal management systems in electric vehicles
    Hwang, Foo Shen
    Confrey, Thomas
    Reidy, Colin
    Picovici, Dorel
    Callaghan, Dean
    Culliton, David
    Nolan, Cathal
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 192
  • [7] Battery and battery management for hybrid electric vehicles: a review
    Conte, F. V.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2006, 123 (10): : 424 - 431
  • [8] A study of different battery thermal management systems for battery pack cooling in electric vehicles
    Wankhede, Sagar
    Thorat, Prajwal
    Shisode, Sanket
    Sonawane, Swapnil
    Wankhade, Rugved
    HEAT TRANSFER, 2022, 51 (08) : 7487 - 7539
  • [9] Battery management system for electric vehicles
    Liu, Xiaokang
    Zhan, Qionghua
    He, Kui
    Shu, Yuehong
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007, 35 (08): : 83 - 86
  • [10] Battery Management System For Electric Vehicles
    Dai Haifeng
    Zhang Xiaolong
    ELECTRONICS WORLD, 2013, 119 (1927): : 38 - 41