Decarbonization of Gas Turbine Driven LNG Liquefaction Plants – Design Options and Challenges

被引:0
|
作者
Taher M. [1 ]
Meher-Homji C. [1 ]
Gülen S.C. [2 ]
机构
[1] LNG Technology Center, Bechtel Energy Inc., 2105 CityWest Blvd., Houston, 77042, TX
[2] Bechtel Infrastructure and Power Inc., 12011 Sunset Hills Rd., Reston, 20190, VA
关键词
11;
D O I
10.38036/jgpp.15.2_42
中图分类号
学科分类号
摘要
Over the last five decades of the LNG industry, there has been a significant evolution in the drivers used to power the refrigeration compressors, spanning a wide range of solutions including steam turbines (ST), heavy duty or aeroderivative gas turbines (GT), electric motors, and their combinations [1]. The trend is currently driven by the need to reduce greenhouse gas emissions. A viable solution to reduce the CO2e/tonne LNG produced of LNG liquefaction plants with GT drivers is to utilize bottoming power cycle(s) (e.g., Steam Rankine Cycle or Organic Rankine Cycle) to recover the waste heat energy from the GT exhaust gases. Other options include a combination of hybrid drives (e.g., GT and ST, or GT and motor) for the refrigeration compressors. This paper is intended to describe opportunities, challenges, and design options for decarbonization of LNG liquefaction plants by focusing on gas turbine drivers of refrigeration compressors. It describes different design options for reducing carbon emissions in both brownfield and greenfield LNG liquefaction plants. Also covered are different design options for CO2 compression systems in LNG liquefaction plants, and transcritical compression pathways. Copyright ©2024 Matt Taher, Cyrus Meher-Homji and S. Can Gülen.
引用
收藏
页码:43 / 50
页数:7
相关论文
共 50 条
  • [1] DESIGN OPTIONS FOR GHG REDUCTION OF GAS TURBINE DRIVEN LNG PLANTS
    Taher, Matt
    Meher-Homji, Cyrus B.
    Gullen, S. Can
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 9, 2024,
  • [2] OFFSHORE GAS LIQUEFACTION WITHOUT OFFSHORE LNG PLANTS
    HAINES, GH
    THOMPSON, J
    OIL & GAS JOURNAL, 1980, 78 (07) : 87 - 91
  • [3] NEW OPTIONS AND DESIGN APPROACHES FOR GAS TURBINE COGENERATION PLANTS.
    Rose, Robert K.
    Ralbovsky, Frank S.
    Turbomachinery International, 1987, 28 (02) : 25 - 30
  • [4] OFFSHORE GAS LIQUEFACTION WITHOUT OFFSHORE LNG PLANTS.
    Haines, G.H.
    Thompson, J.
    Oil and Gas Journal, 1980, 78 (07): : 87 - 91
  • [5] APPLICATION OF GAS TURBINE-COMPRESSORS IN LNG PLANTS
    BROWN, TT
    HUBBARD, JK
    JOURNAL OF ENGINEERING FOR POWER-TRANSACTIONS OF THE ASME, 1980, 102 (01): : 132 - 135
  • [6] Thermoeconomic analysis of gas turbine plants with fuel decarbonization and carbon dioxide sequestration
    Bozzolo, M
    Brandani, M
    Traverso, A
    Massardo, AF
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2003, 125 (04): : 947 - 953
  • [7] All-electric LNG liquefaction plants Technical challenges and possible concept solutions
    Sannino, Ambra
    Liljestrand, Lars
    Rothman, Bengt
    Nestli, Tom
    Kjall-Ohlsson, Martin
    Holsten, Per-Erik
    CONFERENCE RECORD OF THE 2007 IEEE INDUSTRY APPLICATIONS CONFERENCE FORTY-SECOND IAS ANNUAL MEETING, VOLS. 1-5, 2007, : 2407 - +
  • [8] Explosion hazards at gas turbine driven power plants
    Santon, RC
    GAS EXPLOSIONS IN CCGT AND STEAM PLANTS: PREVENTION AND CONTROL, 1998, 1998 (03): : 1 - 17
  • [9] AERODERIVATIVE GAS TURBINES FOR LNG LIQUEFACTION PLANTS - PART 1: THE IMPORTANCE OF THERMAL EFFICIENCY
    Meher-Homji, Cyrus
    Messersmith, Dave
    Hattenbach, Tim
    Rockwell, Jim
    Weyermann, Hans
    Masani, Karl
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 7, 2008, : 627 - 634
  • [10] New all aero-derivative gas turbine driven LNG modules
    Almasi, A.
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2014, 12 (01) : 117 - 124