Research on Failure Pressure Prediction of Water Supply Pipe Based on GA-BP Neural Network

被引:1
|
作者
Li, Qingfu [1 ]
Li, Zeyi [1 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
关键词
genetic algorithm; neural network; failure prediction; corroded pipes; failure pressure;
D O I
10.3390/w16182659
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The water supply pipeline is regarded as the "lifeline" of the city. In recent years, pipeline accidents caused by aging and other factors are common and have caused large economic losses. Therefore, in order to avoid large economic losses, it is necessary to analyze the failure prediction of pipelines so that the pipelines that are going to fail can be replaced in a timely manner. In this paper, we propose a method for predicting the failure pressure of pipelines, i.e., a genetic algorithm was used to optimize the weights and thresholds of a BP neural network. The first step was to determine the topology of the neural network and the number of input and output variables. The second step was to optimize the weights and thresholds initially set for the back propagation neural network using a genetic algorithm. Finally, the optimized back-propagation neural network was used to simulate and predict pipeline failures. It was proved by examples that compared with the separate back propagation neural network model and the optimized and trained genetic algorithm-back propagation neural network, the model performed better in simulation prediction, and the prediction accuracy could reach up to 91%, whereas the unoptimized back propagation neural network model could only reach 85%. It is feasible to apply this model for fault prediction of pipelines.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Research on flow and pressure prediction of urban water supply pipeline network based on GA-BP algorithm
    Xia, Wei
    Wang, Yongyou
    Liu, Runhao
    Wang, Shi
    Journal of Physics: Conference Series, 2021, 1792 (01):
  • [2] Research on the Prediction Model for Abrasive Water Jet Cutting Based on GA-BP Neural Network
    Deng, Songsheng
    Guo, Lianhuan
    Guan, Jinfa
    Guo, Guangdong
    Yang, Xin
    3RD INTERNATIONAL CONFERENCE ON APPLIED ENGINEERING, 2016, 51 : 1297 - 1302
  • [3] Research on Supply Chain safety Inventory forecast based on GA-BP Neural Network
    Bing, Wang
    Chen, Peng
    IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SYSTEMS SCIENCE AND ENGINEERING (IEEE RASSE 2021), 2021,
  • [4] Prediction of Ore Quantity Based on GA-BP Neural Network
    Guo, Li
    Wu, Qiong
    Gu, Qinghua
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT IN THE MINERALS INDUSTRY (SDIMI 2017), 2017, 2 : 78 - 82
  • [5] GA-BP Neural Network Based Tire Noise Prediction
    Che Yong
    Xiao Wangxin
    Chen Lijun
    Huang Zhichu
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 65 - +
  • [6] Prediction of tool wear based on GA-BP neural network
    Wei, Weihua
    Cong, Rui
    Li, Yuantong
    Abraham, Ayodele Daniel
    Yang, Changyong
    Chen, Zengtao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2022, 236 (12) : 1564 - 1573
  • [7] Prediction of Residents' Travel Modes Based on GA-BP Neural Network
    Kong, Yaoyao
    Liang, Yanping
    Xu, Jiajun
    CICTP 2020: ADVANCED TRANSPORTATION TECHNOLOGIES AND DEVELOPMENT-ENHANCING CONNECTIONS, 2020, : 157 - 166
  • [8] Temperature prediction and analysis based on improved GA-BP neural network
    Zhang, Ling
    Sun, Xiaoqi
    Gao, Shan
    AIMS ENVIRONMENTAL SCIENCE, 2022, 9 (05) : 735 - 753
  • [9] Small obstacle size prediction based on a GA-BP neural network
    Ning, Yu
    Jin, Yongping
    Peng, Youduo
    Yan, Jian
    APPLIED OPTICS, 2022, 61 (01) : 177 - 187
  • [10] Research on Virtual Machine Response Time Prediction Method Based on GA-BP Neural Network
    Guo, Jun
    Liu, Shu
    Zhang, Bin
    Yan, Yongming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014