An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model

被引:0
|
作者
Lv, Yunlong [1 ]
Hu, Qin [1 ]
Xu, Hang [1 ]
Lin, Huiyao [1 ]
Wu, Yufan [1 ]
机构
[1] XuefengMountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing,400044, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
62
引用
收藏
相关论文
共 50 条
  • [1] An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model
    Lv, Yunlong
    Hu, Qin
    Xu, Hang
    Lin, Huiyao
    Wu, Yufan
    ENERGY, 2024, 293
  • [2] Ultra-short-term Power Prediction Model Considering Spatial-Temporal Characteristics of Offshore Wind Turbines
    Lin Z.
    Liu K.
    Shen F.
    Zhao X.
    Liang Y.
    Dong M.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (23): : 59 - 66
  • [3] Ultra-short-term wind speed prediction based on deep spatial-temporal residual network
    Liang, Xinhao
    Hu, Feihu
    Li, Xin
    Zhang, Lin
    Feng, Xuan
    Abu Gunmi, Mohammad
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (04)
  • [4] Ultra-short-term wind power interval prediction based on hybrid temporal inception convolutional network model
    Han, Yuchao
    Tong, Xiangqian
    Shi, Shuyan
    Li, Feng
    Deng, Yaping
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 217
  • [5] Ultra-short-term Wind Power Prediction Based on Spatiotemporal Attention Convolution Model
    Lü Y.
    Hu Q.
    Xiong J.
    Long D.
    Dianwang Jishu/Power System Technology, 2024, 48 (05): : 2064 - 2073
  • [6] Ultra-short-term Wind Power Prediction Based on Chaotic CSO Optimized Temporal Attention GRU Model
    Meng A.
    Chen S.
    Wang C.
    Ding W.
    Cai Y.
    Fu J.
    Zhou H.
    Dianwang Jishu/Power System Technology, 2021, 45 (12): : 4692 - 4700
  • [7] Ultra-short-term Power Prediction for BiLSTM Multi Wind Turbines Based on Temporal Pattern Attention
    Wang Y.
    Shi Y.
    Zhou X.
    Zeng Q.
    Fang B.
    Bi Y.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (05): : 1884 - 1892
  • [8] Ultra-short-term wind power forecasting method based on multi-variable joint extraction of spatial-temporal features
    Lei, Zhengling
    Wang, Caiyan
    Liu, Tao
    Wang, Fang
    Xu, Jingxiang
    Yao, Guoquan
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (04)
  • [9] Improved Temporal Convolutional Network Based Ultra-Short-Term Photovoltaic Power Prediction
    Xiao, Hao
    Zheng, Wanting
    Zhou, Hai
    Ma, Tengfei
    Ma, Li
    Pei, Wei
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 2306 - 2311
  • [10] Attention-based temporal-spatial convolutional network for ultra-short-term load forecasting
    Tong, Cheng
    Zhang, Linghua
    Li, Hao
    Ding, Yin
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 220