Improved Target Detection With YOLOv8 for GAN Augmented Polarimetric Images Using MIRNet Denoising Model

被引:0
|
作者
Dey, Jaydeep [1 ]
Anandan, P. [1 ]
Rajagopal, Sonaa [1 ]
Mani, Muralikrishnan [1 ]
机构
[1] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, Tamil Nadu, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Generative adversarial network (GAN); data augmentation; MIRNet; convolutional neural network (CNN); polarimetric images; polarization; denoising; peak signal to noise ratio (PSNR); structural similarity index (SSIM); you only look once (YOLO);
D O I
10.1109/ACCESS.2024.3496523
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Polarized images, which record the polarization characteristics of light, are becoming increasingly important in a variety of applications like remote sensing, medical imaging, and target detection. Their ability to offer additional information beyond traditional intensity-based images makes them valuable in situations where conventional imaging methods are lacking. However, the use of polarized images for tasks such as target detection presents challenges due to the limited availability of datasets, resulting in subpar performance in deep learning algorithms. Traditional methods for improving the quality of polarized images often involve noise reduction techniques, but these approaches may not fully exploit on the potential of deep learning algorithms due to limited dataset access. To get over this restriction and improve the performance of deep learning models on polarised images, new approaches are required. In this study, a new approach is proposed to address the challenges linked with polarized images by harnessing the capabilities of GAN and deep learning models. Specifically, the MIRNet CNN algorithm is utilized to denoise enhanced polarized datasets produced by GANs. By training the deep learning model on these enhanced datasets, the aim is to boost the performance of subsequent tasks like target detection. The study demonstrates the efficacy and efficiency of this novel approach for bettering the polarised image performance of deep learning models, particularly the MIRNet and YOLOv8 models. Through the use of GAN-generated enhanced datasets, there is a notable enhancement in the accuracy of target detection utilizing YOLOv8. This highlights the potential of this approach not only in target detection but also in various other fields that rely on precise object detection and image denoising utilizing polarized images.
引用
收藏
页码:166885 / 166910
页数:26
相关论文
共 50 条
  • [1] Improved YOLOv8 Small Target Detection Algorithm in Aerial Images
    Fu, Jinyi
    Zhang, Zijia
    Sun, Wei
    Zou, Kaixin
    Computer Engineering and Applications, 2024, 60 (06) : 100 - 109
  • [2] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130
  • [3] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)
  • [4] The Target Detection of Wear Particles in Ferrographic Images Based on the Improved YOLOv8
    Wong, Jinyi
    Wei, Haijun
    Zhou, Daping
    Cao, Zheng
    LUBRICANTS, 2024, 12 (08)
  • [5] Ship target detection method based on improved YOLOv8 for SAR images
    Li, Xue
    You, Zhichao
    Gao, Hengkai
    Deng, Haorong
    Lai, Zuomei
    Shao, Hanshu
    REMOTE SENSING LETTERS, 2025, 16 (01) : 89 - 99
  • [6] YOLO-APDM: Improved YOLOv8 for Road Target Detection in Infrared Images
    Ling, Song
    Hong, Xianggong
    Liu, Yongchao
    SENSORS, 2024, 24 (22)
  • [7] Improved YOLOv8 Urban Vehicle Target Detection Algorithm
    Xu, Degang
    Wang, Shuangchen
    Wang, Zaiqing
    Yin, Kedong
    Computer Engineering and Applications, 2024, 60 (18) : 136 - 146
  • [8] UAV Target Detection Algorithm Based on Improved YOLOv8
    Wang, Feng
    Wang, Hongyuan
    Qin, Zhiyong
    Tang, Jiaying
    IEEE ACCESS, 2023, 11 : 116534 - 116544
  • [9] POD PEPPER TARGET DETECTION BASED ON IMPROVED YOLOv8
    Shen, Jiayv
    Kong, Qingzhong
    Liu, Yanghao
    Ma, Na
    INMATEH - Agricultural Engineering, 2024, 74 (03): : 273 - 282
  • [10] Object detection of mural images based on improved YOLOv8
    Wang, Penglei
    Fan, Xin
    Yang, Qimeng
    Tian, Shengwei
    Yu, Long
    MULTIMEDIA SYSTEMS, 2025, 31 (01)