PPFM: Image denoising in photon-counting CT using single-step posterior sampling Poisson flow generative models

被引:0
|
作者
Hein, Dennis [1 ,2 ]
Holmin, Staffan [3 ,4 ]
Szczykutowicz, Timothy [5 ]
Maltz, Jonathan S. [6 ]
Danielsson, Mats [1 ,2 ]
Wang, Ge [7 ]
Persson, Mats [1 ,2 ]
机构
[1] The Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden
[2] MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
[3] The Department of Clinical Neuroscience, Karolinska Insitutet, Stockholm, Sweden
[4] The Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
[5] The Department of Radiology, University of Wisconsin, School of Medicine and Public Health, Madison,WI, United States
[6] GE HealthCare, United States
[7] The Department of Biomedical Engineering, School of Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy,NY, United States
来源
arXiv | 2023年
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
CT Image - De-noising - Deep learning - Diffusion model - Generative model - Low-dose CT - Photon counting - Photon-counting CT - Poisson flow - Poisson flow generative model
引用
收藏
相关论文
共 34 条
  • [1] PPFM: Image Denoising in Photon-Counting CT Using Single-Step Posterior Sampling Poisson Flow Generative Models
    Hein, Dennis
    Holmin, Staffan
    Szczykutowicz, Timothy
    Maltz, Jonathan S.
    Danielsson, Mats
    Wang, Ge
    Persson, Mats
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (07) : 788 - 799
  • [2] Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models
    Hein, Dennis
    Holmin, Staffan
    Szczykutowicz, Timothy
    Maltz, Jonathan S.
    Danielsson, Mats
    Wang, Ge
    Persson, Mats
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2024, 7 (01)
  • [3] Deep-learning-based denoising for photon-counting CT: Image domain or projection domain?
    Karlsson, Hannes
    Moro, Viggo
    Eguizabal, Alma
    Eriksson, Morris
    Agren, Adam
    Akerstrom, Dennis
    Persson, Mats U.
    MEDICAL IMAGING 2022: PHYSICS OF MEDICAL IMAGING, 2022, 12031
  • [4] Image-domain material decomposition using photon-counting CT
    Taguchi, Katsuyuki
    Zhang, Mengxi
    Frey, Eric C.
    Xu, Jingyan
    Segars, W. Paul
    Tsui, Benjamin M. W.
    MEDICAL IMAGING 2007: PHYSICS OF MEDICAL IMAGING, PTS 1-3, 2007, 6510
  • [5] Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction
    Schmidt, Taly Gilat
    Sammut, Barbara A.
    Barber, Rina Foygel
    Pan, Xiaochuan
    Sidky, Emil Y.
    MEDICAL PHYSICS, 2022, 49 (05) : 3021 - 3040
  • [6] Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models
    Damudi, Mohammed Z.
    Kini, Anita S.
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2024, 2024 (01)
  • [7] Interpretable Poisson Optimization-Inspired Deep Network for Single-Photon Counting Image Denoising
    Tian, Xin
    He, Fang
    Liu, Rui
    Ma, Jiayi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [8] Interpretable Poisson Optimization-Inspired Deep Network for Single-Photon Counting Image Denoising
    Tian, Xin
    He, Fang
    Liu, Rui
    Ma, Jiayi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] Application of machine-learning models to improve the image quality of photon-counting CT images
    Toyoda, T.
    Sato, S.
    Kiji, H.
    Kataoka, J.
    Kotoku, J.
    Taki, M.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (05)
  • [10] Image quality improvement of a one-step spectral CT reconstruction on a prototype photon-counting scanner
    Rodesch, Pierre-Antoine
    Si-Mohamed, Salim A.
    Lesaint, Jerome
    Douek, Philippe C.
    Rit, Simon
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (01):