Effect of laser powder bed fusion gas flow rate on microstructure and mechanical properties of 316 L stainless steel

被引:1
|
作者
Chen, Qingpeng [1 ]
Yu, Jiachen [3 ]
Lu, Xiangyu [1 ]
Yang, Zihan [1 ]
Zhang, Guoqing [1 ,4 ,5 ]
Fang, Dong [1 ]
Liu, Sheng [1 ,2 ,3 ,5 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[5] Wuhan Univ, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
关键词
Laser powder bed fusion(LPBF); Gas flow rate; Powder movement; Microstructure; Mechanical properties; 316 L stainless steel; HIGH-STRENGTH; DYNAMICS; SPATTER; DENSITY;
D O I
10.1016/j.jmapro.2024.11.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The inert protective gas flow rate during laser powder bed fusion (LPBF) molding is an important environmental condition. The protective gas not only prevents parts from being oxidizing, but also significantly affects spatter particle removal and particle migration on the powder bed surface. There are relatively few systematic comparative studies reported on the effect of gas flow rate on the movement of two types of powders. Therefore, in this study, three flow rate environments, low, medium and high, were designed for multi-scale experimental analysis of the quality, microstructure, mechanical properties and defects of molded samples. It was observed that the movement of the powder that dominated the sample defects was different in the three environments as the gas flow velocity was adjusted. Under low flow conditions, spatter particles are the main contributor to the creation of defects such as porosity, resulting in poor surface quality (TOP: Sq = 14.023, Side: Sq = 22.006), elevated surface oxygen content (Wt. = 1.7 %), increased grain size, and i a higher number of pores and spatter particles. Consequently, this led to the lowest density, microhardness, and mechanical properties among the three sample groups. High flow rates increased the removal of spatter particles compared to low flow rates, resulting in the highest surface quality (top: Sq = 11.528, Side: Sq = 14.051) and the lowest surface oxygen content (Wt. = 0.88 %). However, under the influence of high flow rates, surface particle migration becomes an important factor in defects, leading to an increase in grain size, porosity, and unfused particles compared to medium flow rates. This leads to a decrease in density, microhardness and elongation. This study reveals, through multi-scale experimental characterization, the mechanism by which varying air flow rates affect powder movement, and hence the microstructure and properties of parts. These findings provide new insights for device development and coupled multi-physics field computational studies.
引用
收藏
页码:850 / 862
页数:13
相关论文
共 50 条
  • [1] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [2] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802
  • [3] Influence of the Processing Parameters on the Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Barrionuevo, German Omar
    Ramos-Grez, Jorge Andres
    Sanchez-Sanchez, Xavier
    Zapata-Hidalgo, Daniel
    Mullo, Jose Luis
    Puma-Araujo, Santiago D.
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2024, 8 (01):
  • [4] Effects of gas tungsten arc welding on the mechanical properties and microstructure of 316L stainless steel by powder bed fusion
    Kuehn, Kevin
    Wang, Xuan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (5-6): : 3093 - 3104
  • [5] Effects of gas tungsten arc welding on the mechanical properties and microstructure of 316L stainless steel by powder bed fusion
    Kevin Kuehn
    Xuan Wang
    The International Journal of Advanced Manufacturing Technology, 2024, 132 : 2563 - 2573
  • [6] High-power laser powder bed fusion of 316L stainless steel: Defects, microstructure, and mechanical properties
    Huang, Gao
    Wei, Kaiwen
    Deng, Jinfeng
    Liu, Mengna
    Zeng, Xiaoyan
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 83 : 235 - 245
  • [7] Comparison of the microstructure, mechanical properties and distortion of stainless steel 316 L fabricated by micro and conventional laser powder bed fusion
    Fu, Jin
    Qu, Shuo
    Ding, Junhao
    Song, Xu
    Fu, M. W.
    ADDITIVE MANUFACTURING, 2021, 44
  • [8] Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process
    Wang, Xianglong
    Muniz-Lerma, Jose Alberto
    Sanchez-Mata, Oscar
    Shandiz, Mohammad Attarian
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 736 : 27 - 40
  • [9] Effect of annealing on the mechanical and corrosion properties of 316L stainless steel manufactured by laser powder bed fusion
    Ura-Binczyk, E.
    Dobkowska, A.
    Bazarnik, P.
    Ciftci, J.
    Krawczynska, A.
    Chrominski, W.
    Wejrzanowski, T.
    Molak, R.
    Sitek, R.
    Plocinski, T.
    Jaroszewicz, J.
    Mizera, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 860
  • [10] Microstructure and mechanical properties of a modified 316 austenitic stainless steel alloy manufactured by laser powder bed fusion
    Svahn, F.
    Mishra, P.
    Edin, E.
    Akerfeldt, P.
    Antti, M. -l.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 1452 - 1462