Improving diagnostics and prognostics of implantable cardioverter defibrillator batteries with interpretable machine learning models

被引:0
|
作者
Galuppini, Giacomo [1 ,3 ]
Liang, Qiaohao [1 ]
Tamirisa, Prabhakar A. [2 ]
Lemmerman, Jeffrey A. [2 ]
Sullivan, Melani G. [2 ]
Mazack, Michael J. M. [2 ]
Gomadam, Partha M. [2 ]
Bazant, Martin Z. [1 ]
Braatz, Richard D. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Medtron Energy & Component Ctr, Brooklyn Ctr, MN USA
[3] Univ Pavia, Pavia, PV, Italy
关键词
Batteries; Defibrillators; Machine learning; Generalized additive models; Diagnostics; Prognostics; LITHIUM-ION BATTERIES; RESISTANCE; CELLS;
D O I
10.1016/j.jpowsour.2024.234668
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Medtronic Implantable Cardioverter Defibrillators (ICDs) and Cardiac Resynchronization Therapy Defibrillators (CRT-Ds) rely on high-energy density, lithium batteries, which are manufactured with a special lithium/carbon monofluoride (CFx)-silver F x )-silver vanadium oxide (SVO) hybrid cathode design. Consistently high battery performance is crucial for this application, since poor performance may result in ineffective patient treatment, whereas early replacement may involve surgery and increase in maintenance costs. To evaluate performance, batteries are tested, both at the time of production and post-production, through periodic sampling carried out over multiple years. This considerable amount of experimental data is exploited for the first time in this work to develop a data-driven, machine learning approach, relying on Generalized Additive Models (GAMs) to predict battery performance, based on production data. GAMs combine prediction accuracy, which enables evaluation of battery performance immediately after production, with model interpretability, which provides clues on how to further improve battery design and production. Model interpretation allows to identify key features from the battery production data that offer physical insights to support future battery development, and foster the development of physics-based model for hybrid cathode batteries. The proposed approach is validated on 21 different datasets, targeting several performance-related features, and delivers consistently high prediction accuracy on test data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Improving Utility Cables Diagnostics and Prognostics using Machine Learning
    Shekhar, Shishir
    Shekhar, Shashwat
    2023 IEEE PES GRID EDGE TECHNOLOGIES CONFERENCE & EXPOSITION, GRID EDGE, 2023,
  • [2] Implantable Cardioverter-Defibrillator Leads Design, Diagnostics, and Management
    Swerdlow, Charles D.
    Ellenbogen, Kenneth A.
    CIRCULATION, 2013, 128 (18) : 2062 - 2071
  • [3] Improving the experience of patients living with an implantable cardioverter defibrillator
    Barisone, Michela
    Ghirotto, Luca
    Hayter, Mark
    Molin, Alberto Dal
    Hendriks, Jeroen
    Jennings, Catriona
    EUROPEAN JOURNAL OF CARDIOVASCULAR NURSING, 2023, 22 (03) : E21 - E24
  • [4] Toward Better Risk Stratification for Implantable Cardioverter-Defibrillator Recipients: Implications of Explainable Machine Learning Models
    Deng, Yu
    Cheng, Sijing
    Huang, Hao
    Liu, Xi
    Yu, Yu
    Gu, Min
    Cai, Chi
    Chen, Xuhua
    Niu, Hongxia
    Hua, Wei
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2022, 9 (09)
  • [5] Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
    Tateishi, Ryo
    Suzuki, Makoto
    Shimizu, Masato
    Shimada, Hiroshi
    Tsunoda, Takahiro
    Miyazaki, Hiroko
    Misu, Yoshiki
    Yamakami, Yosuke
    Yamaguchi, Masao
    Kato, Nobutaka
    Isshiki, Ami
    Kimura, Shigeki
    Fujii, Hiroyuki
    Nishizaki, Mitsuhiro
    Sasano, Tetsuo
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [6] Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
    Tateishi, R.
    Suzuki, M.
    Shimizu, M.
    Shimada, H.
    Tsunoda, T.
    Miyazaki, H.
    Misu, Y.
    Yamakami, Y.
    Yamaguchi, M.
    Kato, N.
    Isshiki, A.
    Kimura, S.
    Fujii, H.
    Nishizaki, M.
    Sasano, T.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [7] Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
    Ryo Tateishi
    Makoto Suzuki
    Masato Shimizu
    Hiroshi Shimada
    Takahiro Tsunoda
    Hiroko Miyazaki
    Yoshiki Misu
    Yosuke Yamakami
    Masao Yamaguchi
    Nobutaka Kato
    Ami Isshiki
    Shigeki Kimura
    Hiroyuki Fujii
    Mitsuhiro Nishizaki
    Tetsuo Sasano
    Scientific Reports, 13 (1)
  • [8] Clinical performance of implantable cardioverter-defibrillator lead monitoring diagnostics
    Poole, Jeanne E.
    Swerdlow, Charles D.
    Tarakji, Khaldoun G.
    Mittal, Suneet
    Ellenbogen, Kenneth A.
    Greenspon, Arnold J.
    Kennergren, Charles
    Philbert, Berit T.
    Moore, JoEllyn
    Jones, R. Chris
    Schaller, Robert D.
    Hansalia, Riple
    Simmers, Timothy
    Mihalcz, Attila
    DeBus, Becky
    Lexcen, Daniel R.
    Gunderson, Bruce
    Wilkoff, Bruce L.
    HEART RHYTHM, 2022, 19 (03) : 363 - 371
  • [9] Improving implantable cardioverter defibrillator therapy through better programming
    Kutyifa, Valentina
    Moss, Arthur J.
    Zareba, Wojciech
    EXPERT REVIEW OF MEDICAL DEVICES, 2013, 10 (03) : 283 - 285
  • [10] Improving contemporary algorithms for implantable cardioverter-defibrillator function
    Shome, Shibaji
    Li, Dan
    Thompson, Julie
    McCabe, Aaron
    JOURNAL OF ELECTROCARDIOLOGY, 2010, 43 (06) : 503 - 508