Regulation of electrocatalytic properties of high entropy alloy electrocatalysts for the oxygen evolution reaction

被引:3
|
作者
Wang, Kaixin [1 ]
Wang, Guoqiang [1 ]
Liu, Ye [1 ]
Cai, Qianqian [1 ]
Chen, Xing [1 ]
Zhang, Lei [1 ]
Lv, Xiaojun [1 ]
机构
[1] North China Elect Power Univ, Sch New Energy, China State Key Lab Alternate Elect Power Syst Ren, Beijing 102206, Peoples R China
基金
国家重点研发计划;
关键词
STABLE ELECTROCATALYST; CATALYSTS; STABILITY; STORAGE; OXIDE; CO2;
D O I
10.1039/d4ta04984e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the rapid increase in demand for green hydrogen, the development of electrolytic water technology has been widely concerned. An efficient oxygen evolution catalyst provides the feasibility of hydrogen production by electrolysis of water. High entropy alloys (HEAs), usually solid solutions containing at least five major elements, have shown broad application potential in the field of the electrocatalytic oxygen evolution (OER) in recent years due to their ordered structure and tunability. At the same time, high entropy alloys are expected to solve the slow kinetics and various corrosion problems on the oxygen evolution side of electrocatalytic hydrogen production. However, developing efficient HEA electrocatalysts suitable for OER applications and understanding their catalytic mechanisms remain challenges. Therefore, this paper mainly reviews the characteristics of high entropy alloy materials and the regulation of electrocatalytic property methods, including element composition control, size and structural morphology control, strain, phase and defect engineering, etc. The relationship between the structure and electrocatalytic performance of HEA electrocatalysts is discussed in this paper. Finally, the key challenges and future opportunities for the OER of high entropy nanomaterials are discussed. We expect that this paper will stimulate more research on the development and improvement of HEA nanostructured electrocatalysts, explore their feasible and scalable preparation methods, and promote their wide application in the field of electrocatalysis. We briefly introduce the four core effects of HEAs and various regulatory strategies for HEA catalysts. This will help scholars further understand the advantages and flexibility of HEAs as catalysts.
引用
收藏
页码:29311 / 29334
页数:24
相关论文
共 50 条
  • [1] Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction
    Huo, Xiaoran
    Yu, Huishu
    Xing, Bowei
    Zuo, Xiaojiao
    Zhang, Nannan
    CHEMICAL RECORD, 2022, 22 (12):
  • [2] Recent Progress in High-Entropy Alloy Electrocatalysts for Hydrogen Evolution Reaction
    Wang, Qian
    Xie, Jiacheng
    Qin, Yao
    Kong, Yafen
    Zhou, Shunxin
    Li, Qingyi
    Sun, Qian
    Chen, Bo
    Xie, Peng
    Wei, Zengxi
    Zhao, Shuangliang
    ADVANCED MATERIALS INTERFACES, 2024, 11 (14)
  • [3] Facile synthesis of a NiMnFeCrCu high entropy alloy for electrocatalytic oxygen evolution reactions
    Mucalo, M.
    Bolzoni, L.
    Qu, Y.
    Kumar, A.
    Li, Y.
    Yang, F.
    MATERIALS TODAY SUSTAINABILITY, 2023, 22
  • [4] Preparation and Electrocatalytic Oxygen Evolution Performances of High-entropy Alloy FeCoNiCrP
    Pan Y.
    Zhong X.
    Zhu Y.
    Lu T.
    Yu J.
    Cailiao Daobao/Materials Reports, 2022, 36 (14):
  • [5] High-Entropy Oxides as Electrocatalysts for the Oxygen Evolution Reaction: A Mini Review
    Huang, Yueqi
    Wang, Dan
    Yu, Yihang
    Li, Zenghui
    Wen, Xiaojing
    Wang, Zhiyuan
    ENERGY & FUELS, 2024, 38 (15) : 13661 - 13684
  • [6] Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction
    Xiaodan Cui
    Boliang Zhang
    Congyuan Zeng
    Shengmin Guo
    MRS Communications, 2018, 8 : 1230 - 1235
  • [7] Research Progress of High-entropy Oxides for Electrocatalytic Oxygen Evolution Reaction
    Zhang, Xiaozhen
    Wang, Xuexue
    Lv, Xiaomeng
    CHEMSUSCHEM, 2025, 18 (02)
  • [8] Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction
    Cui, Xiaodan
    Zhang, Boliang
    Zeng, Congyuan
    Guo, Shengmin
    MRS COMMUNICATIONS, 2018, 8 (03) : 1230 - 1235
  • [9] A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater
    Li, Peng
    Yao, Yuanpeng
    Ouyang, Wengen
    Liu, Ze
    Yin, Huayi
    Wang, Dihua
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 138 : 29 - 35
  • [10] Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction
    Chae, Sangwoo
    Shio, Akihito
    Kishida, Tomoya
    Furutono, Kosuke
    Kojima, Yumi
    Panomsuwan, Gasidit
    Ishizaki, Takahiro
    MATERIALS, 2024, 17 (12)