Distribution-free prediction intervals with conformal prediction for acoustical estimation

被引:0
|
作者
Khurjekar, Ishan [1 ]
Gerstoft, Peter [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
来源
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA | 2024年 / 156卷 / 04期
关键词
GEOACOUSTIC INVERSION; SOURCE LOCALIZATION; NETWORK; NUMBER;
D O I
10.1121/10.0032452
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustical parameter estimation is a routine task in many domains. The performance of existing estimation methods is affected by external uncertainty, yet the methods provide no measure of confidence in the estimates. Hence, it is crucial to quantify estimate uncertainty before real-world deployment. Conformal prediction (CP) generates statistically valid prediction intervals for any estimation model using calibration data; a limitation is that calibration data needed by CP must come from the same distribution as the test-time data. In this work, we propose to use CP to obtain statistically valid uncertainty intervals for acoustical parameter estimation using a data-driven model or an analytical model without training data. We consider direction-of-arrival estimation and localization of sources. The performance is validated on plane wave data with different sources of uncertainty, including ambient noise, interference, and sensor location uncertainty. The application of CP for data-driven and traditional propagation models is demonstrated. Results show that CP can be used for statistically valid uncertainty quantification with proper calibration data.
引用
收藏
页码:2656 / 2667
页数:12
相关论文
共 50 条
  • [1] DISTRIBUTION-FREE AND OTHER PREDICTION INTERVALS
    KONIJN, HS
    AMERICAN STATISTICIAN, 1987, 41 (01): : 11 - 15
  • [2] Distribution-free Conformal Prediction for Ordinal Classification
    Chakraborty, Subhrasish
    Tyagi, Chhavi
    Qiao, Haiyan
    Guo, Wenge
    13TH SYMPOSIUM ON CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, 2024, 230 : 120 - 139
  • [3] Distribution-free prediction intervals in mixed linear models
    Jiang, JM
    Zhang, WH
    STATISTICA SINICA, 2002, 12 (02) : 537 - 553
  • [4] Adaptive, Distribution-Free Prediction Intervals for Deep Networks
    Kivaranovic, Danijel
    Johnson, Kory D.
    Leeb, Hannes
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 4346 - 4355
  • [5] Discretized conformal prediction for efficient distribution-free inference
    Chen, Wenyu
    Chun, Kelli-Jean
    Barber, Rina Foygel
    STAT, 2018, 7 (01):
  • [6] Distribution-free prediction intervals for the future current record statistics
    Raqab, Mohammad Z.
    STATISTICAL PAPERS, 2009, 50 (02) : 429 - 439
  • [7] Distribution-free prediction intervals for the future current record statistics
    Mohammad Z. Raqab
    Statistical Papers, 2009, 50 : 429 - 439
  • [8] Distribution-free prediction intervals for order statistics based on record coverage
    Jafar Ahmadi
    N. Balakrishnan
    Journal of the Korean Statistical Society, 2011, 40 : 181 - 192
  • [9] Conformal Prediction for Distribution-Free Optimal Control of Linear Stochastic Systems
    Vlahakis, Eleftherios E.
    Lindemann, Lars
    Sopasakis, Pantelis
    Dimarogonas, Dimos V.
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2835 - 2840
  • [10] Distribution-free prediction intervals for order statistics based on record coverage
    Ahmadi, Jafar
    Balakrishnan, N.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (02) : 181 - 192