Silicon integrated photonic-electronic neuron for noise-resilient deep learning

被引:0
|
作者
Roumpos, Ioannis [1 ,2 ]
de Marinis, Lorenzo [3 ]
Kovaios, Stefanos [2 ,4 ]
Kincaid, Peter Seigo [3 ]
Paolini, Emilio [3 ]
Tsakyridis, Apostolos [2 ,4 ]
Moralis-Pegios, Miltiadis [2 ,4 ]
Berciano, Mathias [5 ]
Ferraro, Filippo [5 ]
Bode, Dieter [5 ]
Srinivasan, Srinivasan Ashwyn [5 ,6 ]
Pantouvaki, Marianna [5 ,7 ]
Andriolli, Nicola [8 ]
Contestabile, Giampiero [3 ]
Pleros, Nikos [2 ,4 ]
Vyrsokinos, Konstantinos [1 ,2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece
[2] Aristotle Univ Thessaloniki, Ctr Interdisciplinary Res & Innovat, Thessaloniki, Greece
[3] Scuola Super Sant Anna, I-56124 Pisa, Italy
[4] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki, Greece
[5] Imec, Kapeldreef 75, Leuven 3001, Belgium
[6] Lightmatter Inc, 100 Summer St, Boston, MA 02110 USA
[7] Microsoft Res Ctr, Cambridge, England
[8] Univ Pisa, I-56122 Pisa, Italy
来源
OPTICS EXPRESS | 2024年 / 32卷 / 20期
关键词
Funding. HORIZON EUROPE Digital; Industry and Space (101092766). Acknowledgments. This work was supported by the European Commission through the HORIZON projects SIPHO-G (101017194) and ALLEGRO (101092766) and partially supported by the Italian Ministry of Foreign Affairs and International Cooperation; grant number IN22GR06;
D O I
10.1364/OE.532306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents an experimental demonstration of the photonic segment of a photonic-electronic multiply accumulate neuron (PEMAN) architecture, employing a silicon photonic chip with high-speed electro-absorption modulators for matrix-vector multiplications. The photonic integrated circuit has been evaluated through a noise-sensitive three-layer neural network (NN) with 1350 trainable parameters targeting heartbeat sound classification for health monitoring purposes. Its experimental validation revealed F1-scores of 85.9% and 81% at compute rates of 10 and 20 Gbaud, respectively, exploiting quantization- and noise-aware deep learning techniques and introducing a novel activation function slope stretching strategy for mitigating noise impairments. The enhanced noise-resilient properties of this novel training model are confirmed via simulations for varying noise levels, being in excellent agreement with the respective experimental data obtained at 10, 20, and 30 Gbaud symbol rates.
引用
收藏
页码:34264 / 34274
页数:11
相关论文
共 50 条
  • [1] Noise-resilient deep learning for integrated circuit tomography
    Guo, Zhen
    Liu, Zhiguang
    Barbastathis, George
    Zhang, Qihang
    Glinsky, Michael E.
    Alpert, Bradley K.
    Levine, Zachary H.
    OPTICS EXPRESS, 2023, 31 (10) : 15355 - 15371
  • [2] Noise-resilient and high-speed deep learning with coherent silicon photonics
    Mourgias-Alexandris, G.
    Moralis-Pegios, M.
    Tsakyridis, A.
    Simos, S.
    Dabos, G.
    Totovic, A.
    Passalis, N.
    Kirtas, M.
    Rutirawut, T.
    Gardes, F. Y.
    Tefas, A.
    Pleros, N.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Noise-resilient and high-speed deep learning with coherent silicon photonics
    G. Mourgias-Alexandris
    M. Moralis-Pegios
    A. Tsakyridis
    S. Simos
    G. Dabos
    A. Totovic
    N. Passalis
    M. Kirtas
    T. Rutirawut
    F. Y. Gardes
    A. Tefas
    N. Pleros
    Nature Communications, 13
  • [4] Noise-Resilient Photonic Analog Neural Networks
    Varri, Akhil
    Brueckerhoff-Plueckelmann, Frank
    Dijkstra, Jelle
    Wendland, Daniel
    Bankwitz, Rasmus
    Agnihotri, Apoorv
    Pernice, Wolfram H. P.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (22) : 7969 - 7976
  • [5] Deep learning techniques for noise-resilient localisation in wireless sensor networks
    Alwan, Nuha A. S.
    Hussain, Zahir M.
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2021, 36 (02) : 59 - 67
  • [6] Improving Scalability in Thermally Resilient Hybrid Photonic-Electronic NoCs
    Ramezanpour, Keyvan
    Liu, Xingye
    Ampadu, Paul
    TENTH INTERNATIONAL WORKSHOP ON NETWORK ON CHIP ARCHITECTURES (NOCARC 2017), 2017,
  • [7] Machine Learning of Noise-Resilient Quantum Circuits
    Cincio, Lukasz
    Rudinger, Kenneth
    Sarovar, Mohan
    Coles, Patrick J.
    PRX QUANTUM, 2021, 2 (01):
  • [8] Adaptive noise-resilient deep learning for image reconstruction in multimode fiber scattering
    Mohammadzadeh, Mohammad
    Tabakhi, Shima
    Sayeh, Mohammad R.
    APPLIED OPTICS, 2024, 63 (12) : 3003 - 3014
  • [9] A Compact Butterfly-Style Silicon Photonic-Electronic Neural Chip for Hardware-Efficient Deep Learning
    Feng, Chenghao
    Gu, Jiaqi
    Zhu, Hanqing
    Ying, Zhoufeng
    Zhao, Zheng
    Pan, David Z.
    Chen, Ray T.
    ACS PHOTONICS, 2022, 9 (12) : 3906 - 3916
  • [10] A Deep Learning-Based Noise-Resilient Keyword Spotting Engine for Embedded Platforms
    Abdelmoula, Ramzi
    Khamis, Alaa
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 134 - 146