An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis

被引:0
|
作者
Luo, Jia [1 ]
Huang, Jinying [1 ]
Ma, Jiancheng [1 ]
Li, Hongmei [1 ]
机构
[1] College of Mechanical Engineering, North University of China, China
来源
JVC/Journal of Vibration and Control | 2022年 / 28卷 / 11-12期
关键词
Failure analysis - Fault detection - Laboratories - Statistical tests - Classification (of information) - Convolution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1379 / 1389
相关论文
共 50 条
  • [1] An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis
    Luo, Jia
    Huang, Jinying
    Ma, Jiancheng
    Li, Hongmei
    JOURNAL OF VIBRATION AND CONTROL, 2022, 28 (11-12) : 1379 - 1389
  • [2] A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis
    Luo, Jia
    Huang, Jinying
    Li, Hongmei
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (02) : 407 - 425
  • [3] A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis
    Jia Luo
    Jinying Huang
    Hongmei Li
    Journal of Intelligent Manufacturing, 2021, 32 : 407 - 425
  • [4] Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes
    Luo, Jia
    Huang, Jingying
    Ma, Jiancheng
    Liu, Siyuan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2024, 238 (02) : 260 - 273
  • [5] Data augment method for machine fault diagnosis using conditional generative adversarial networks
    Wang, Jinrui
    Han, Baokun
    Bao, Huaiqian
    Wang, Mingyan
    Chu, Zhenyun
    Shen, Yuwei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (12) : 2719 - 2727
  • [6] Research on Deep Convolutional Generative Adversarial Networks Diagnosis Method of Bearing Fault Under Small Sample Condition
    Liu Y.
    Cai H.
    Li W.
    Zhao S.
    Liu C.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (04): : 817 - 823and836
  • [7] Composite Fault Diagnosis Based on Deep Convolutional Generative Adversarial Network
    Zhang Yonghong
    Zhang Zhongyang
    Shao Fan
    Wang Yifei
    Zhao Xiaoping
    Lv Kaiyang
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [8] A novel imbalanced fault diagnosis method based on area identification conditional generative adversarial networks
    Xu, Yuan
    Zou, Xun
    Ke, Wei
    Zhu, Qun-Xiong
    He, Yan-Lin
    Zhang, Ming-Qing
    Zhang, Yang
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (12): : 6944 - 6958
  • [9] An Efficient Method Based on Conditional Generative Adversarial Networks for Imbalanced Fault Diagnosis of Rolling Bearing
    Zheng, Taisheng
    Song, Lei
    Guo, Bingjun
    Liang, Haoran
    Guo, Lili
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [10] Retinal Vessel Segmentation Based on Conditional Deep Convolutional Generative Adversarial Networks
    Jiang Y.
    Tan N.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 136 - 147