Smart control of bridge support forces using adaptive bearings based on physics-informed neural network (PINN)

被引:0
|
作者
Yan, Huan [1 ]
Gou, Hong-Ye [1 ,2 ,3 ]
Hu, Fei [1 ]
Ni, Yi-Qing [4 ]
Wang, You-Wu [4 ]
Wu, Da-Cheng [5 ]
Bao, Yi [6 ]
机构
[1] Southwest Jiaotong Univ, Sch Civil Engn, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Minist Educ, Key Lab High Speed Railway Engn, Chengdu 610031, Sichuan, Peoples R China
[3] Southwest Jiaotong Univ, Natl Key Lab Bridge Intelligent & Green Construct, Chengdu 611756, Sichuan, Peoples R China
[4] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[5] Jitong Intelligent Equipment Co Ltd, Chengdu 610000, Sichuan, Peoples R China
[6] Stevens Inst Technol, Dept Civil Environm & Ocean Engn, Hoboken, NJ 07030 USA
基金
中国国家自然科学基金;
关键词
Physics-informed neural network; Bearing reaction force; Height-adjustable bearing; Controlling bridge support forces; Marine predators algorithm;
D O I
10.1016/j.autcon.2024.105790
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Bridge bearings play significant roles in the mechanical responses of bridges and foundations and impact the operation of bridges. This paper presents an adaptive bearing with adjustable height and develops an approach to control bearings toward smart bridges based on Physics-Informed Neural Network (PINN). The approach integrates the mechanical governing equation, which describes the relationship between bridge responses and bearing heights, with data-driven neural networks, enabling efficient prediction of bearing reaction forces and effective optimization of bearing heights for controlling the reaction forces. The effectiveness of the approach is evaluated by examining various types of bridges. The results showed that the proposed approach outperformed 20 machine learning models. The case study showed that the approach effectively limited the force adjustment error to 18 % while reducing both vehicle-bridge response and displacement on bearing top plate. This research will enhance bridge controllability, thereby improving bridge operation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] FDM-PINN: Physics-informed neural network based on fictitious domain method
    Yang, Qihong
    Yang, Yu
    Cui, Tao
    He, Qiaolin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (03) : 511 - 524
  • [2] FD-PINN: FREQUENCY DOMAIN PHYSICS-INFORMED NEURAL NETWORK
    Song J.
    Cao W.
    Zhang W.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (05): : 1195 - 1205
  • [3] Deep Lyapunov-Based Physics-Informed Neural Networks (DeLb-PINN) for Adaptive Control Design
    Hart, Rebecca G.
    Patil, Omkar Sudhir
    Griffis, Emily J.
    Dixon, Warren E.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1511 - 1516
  • [4] NH-PINN: Neural homogenization-based physics-informed neural network for multiscale problems
    Leung, Wing Tat
    Lin, Guang
    Zhang, Zecheng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 470
  • [5] SWENet: A Physics-Informed Deep Neural Network (PINN) for Shear Wave Elastography
    Yin, Ziying
    Li, Guo-Yang
    Zhang, Zhaoyi
    Zheng, Yang
    Cao, Yanping
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (04) : 1434 - 1448
  • [6] Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics
    Ji, Weiqi
    Qiu, Weilun
    Shi, Zhiyu
    Pan, Shaowu
    Deng, Sili
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (36): : 8098 - 8106
  • [7] MFLP-PINN: A physics-informed neural network for multiaxial fatigue life prediction
    He, GaoYuan
    Zhao, YongXiang
    Yan, ChuLiang
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 98
  • [8] Eco-PiNN: A Physics-informed Neural Network for Eco-toll Estimation
    Li, Yan
    Yang, Mingzhou
    Eagon, Matthew
    Farhadloo, Majid
    Xie, Yiqun
    Northrop, William F.
    Shelchar, Shashi
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 838 - 846
  • [9] Dynamic displacement reconstruction of bridge based on physics-informed recurrent neural network
    Yi Tao
    Wen-Han Chen
    Zhi-Bin Li
    Wen-Yu He
    Advances in Bridge Engineering, 6 (1):
  • [10] Physics-Informed Neural Network (PINN) Evolution and Beyond: A Systematic Literature Review and Bibliometric Analysis
    Lawal, Zaharaddeen Karami
    Yassin, Hayati
    Lai, Daphne Teck Ching
    Idris, Azam Che
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (04)