Point cloud;
Architectural heritage;
3D semantic segmentation;
Weakly supervised;
D O I:
10.1016/j.autcon.2024.105831
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
Point cloud semantic segmentation is significant for managing and protecting architectural heritage. Currently, fully supervised methods require a large amount of annotated data, while weakly supervised methods are difficult to transfer directly to architectural heritage. This paper proposes an end-to-end teacher-guided consistency and contrastive learning weakly supervised (TCCWS) framework for architectural heritage point cloud semantic segmentation, which can fully utilize limited labeled points to train network. Specifically, a teacherstudent framework is designed to generate pseudo labels and a pseudo label dividing module is proposed to distinguish reliable and ambiguous point sets. Based on it, a consistency and contrastive learning strategy is designed to fully utilize supervision signals to learn the features of point clouds. The framework is tested on the ArCH dataset and self-collected point cloud, which demonstrates that the proposed method can achieve effective semantic segmentation of architectural heritage using only 0.1 % of annotated points.
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Sun, Tianfang
Zhang, Zhizhong
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Zhang, Zhizhong
Tan, Xin
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
East China Normal Univ, Chongqing Inst, Chongqing 401333, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Tan, Xin
Qu, Yanyun
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Dept Comp Sci & Technol, Xiamen 361005, Fujian, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
Qu, Yanyun
Xie, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
East China Normal Univ, Chongqing Inst, Chongqing 401333, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
机构:
CUHKSZ, FNii, Shenzhen, Peoples R China
CUHKSZ, SSE, Shenzhen, Peoples R China
SRIBD, Shenzhen, Peoples R China
Chinese Univ Hong Kong Shenzhen, Shenzhen 518172, Peoples R ChinaCUHKSZ, FNii, Shenzhen, Peoples R China
Wu, Yushuang
Yan, Zizheng
论文数: 0引用数: 0
h-index: 0
机构:
CUHKSZ, FNii, Shenzhen, Peoples R China
CUHKSZ, SSE, Shenzhen, Peoples R China
SRIBD, Shenzhen, Peoples R ChinaCUHKSZ, FNii, Shenzhen, Peoples R China
Yan, Zizheng
Cai, Shengcai
论文数: 0引用数: 0
h-index: 0
机构:
CUHKSZ, FNii, Shenzhen, Peoples R China
SRIBD, Shenzhen, Peoples R ChinaCUHKSZ, FNii, Shenzhen, Peoples R China
Cai, Shengcai
Li, Guanbin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Guangzhou, Peoples R ChinaCUHKSZ, FNii, Shenzhen, Peoples R China
Li, Guanbin
Han, Xiaoguang
论文数: 0引用数: 0
h-index: 0
机构:
CUHKSZ, FNii, Shenzhen, Peoples R China
CUHKSZ, SSE, Shenzhen, Peoples R ChinaCUHKSZ, FNii, Shenzhen, Peoples R China
Han, Xiaoguang
Cui, Shuguang
论文数: 0引用数: 0
h-index: 0
机构:
CUHKSZ, FNii, Shenzhen, Peoples R China
CUHKSZ, SSE, Shenzhen, Peoples R ChinaCUHKSZ, FNii, Shenzhen, Peoples R China
机构:
South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R ChinaSouth China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
Su, Yongyi
Xu, Xun
论文数: 0引用数: 0
h-index: 0
机构:
ASTAR, I2R, Singapore 138632, Singapore
Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R ChinaSouth China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
Xu, Xun
Jia, Kui
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R ChinaSouth China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China