Model development for bespoke large language models for digital triage assistance in mental health care

被引:0
|
作者
Taylor, Niall [1 ]
Kormilitzin, Andrey [1 ]
Lorge, Isabelle [1 ]
Nevado-Holgado, Alejo [1 ]
Cipriani, Andrea [1 ,2 ,3 ]
Joyce, Dan W. [4 ,5 ,6 ]
机构
[1] Univ Oxford, Dept Psychiat, Oxford, England
[2] NIHR Oxford Hlth Biomed Res Ctr, Oxford Precis Psychiat Lab, Oxford, England
[3] Warneford Hosp, Oxford Hlth NHS Fdn Trust, Oxford, England
[4] Univ Liverpool, Dept Primary Care & Mental Hlth, Liverpool, England
[5] Univ Liverpool, Civ Hlth Innovat Labs, Liverpool, England
[6] Mersey Care NHS Fdn Trust, Mental Hlth Res Innovat Ctr M RIC, Prescot, Merseyside, England
关键词
Mental health; LLM; Triage; Clinical support; Efficiency; Attention; STIGMA;
D O I
10.1016/j.artmed.2024.102988
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contemporary large language models (LLMs) may have utility for processing unstructured, narrative free-text clinical data contained in electronic health records (EHRs) - a particularly important use-case for mental health where a majority of routinely-collected patient data lacks structured, machine-readable content. A significant problem for the United Kingdom's National Health Service (NHS) are the long waiting lists for specialist mental healthcare. According to NHS data (NHS Digital, 2024), in each month of 2023, there were between 370,000 and 470,000 individual new referrals into secondary mental healthcare services. Referrals must be triaged by clinicians, using clinical information contained in the patient's EHR to arrive at a decision about the most appropriate mental healthcare team to assess and potentially treat these patients. The ability to efficiently recommend a relevant team by ingesting potentially voluminous clinical notes could help services both reduce referral waiting times and with the right technology, improve the evidence available to justify triage decisions. We present and evaluate three different approaches for LLM-based, end-to-end ingestion of variable- length clinical EHR data to assist clinicians when triaging referrals. Our model is able to deliver triage recommendations consistent with existing clinical practices and its architecture was implemented on a single GPU, making it practical for implementation in resource-limited NHS environments where private implementations of LLM technology will be necessary to ensure confidential clinical data are appropriately controlled and governed. Code available at: https://github.com/NtaylorOX/BespokeLLM_Triage.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Large language models in health care: Development, applications, and challenges
    Yang, Rui
    Tan, Ting Fang
    Lu, Wei
    Thirunavukarasu, Arun James
    Ting, Daniel Shu Wei
    Liu, Nan
    HEALTH CARE SCIENCE, 2023, 2 (04): : 255 - 263
  • [2] Large language models for the mental health community: framework for translating code to care
    Malgaroli, Matteo
    Schultebraucks, Katharina
    Myrick, Keris Jan
    Loch, Alexandre Andrade
    Ospina-Pinillos, Laura
    Choudhury, Tanzeem
    Kotov, Roman
    De Choudhury, Munmun
    Torous, John
    LANCET DIGITAL HEALTH, 2025, 7 (04): : e282 - e285
  • [3] The promise of large language models in health care
    Arora, Anmol
    Arora, Ananya
    LANCET, 2023, 401 (10377): : 641 - 642
  • [4] The Opportunities and Risks of Large Language Models in Mental Health
    Lawrence, Hannah R.
    Schneider, Renee A.
    Rubin, Susan B.
    Mataric, Maja J.
    McDuff, Daniel J.
    Bell, Megan Jones
    JMIR MENTAL HEALTH, 2024, 11
  • [5] Large language models: a new chapter in digital health
    不详
    LANCET DIGITAL HEALTH, 2024, 6 (01): : e1 - e1
  • [6] Large language models: a new chapter in digital health
    The Lancet Digital Health
    The Lancet Digital Health, 2024, 6 (01):
  • [7] More Is Different: Large Language Models in Health Care
    Lungren, Matthew P.
    Fishman, Elliot K.
    Chu, Linda C.
    Rizk, Ryan C.
    Rowe, Steven P.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2024, 21 (07) : 1151 - 1154
  • [8] Large Language Models for Mental Health Applications:Systematic Review
    Guo, Zhijun
    Lai, Alvina
    Thygesen, Johan H.
    Farrington, Joseph
    Keen, Thomas
    Li, Kezhi
    JMIR MENTAL HEALTH, 2024, 11
  • [9] Towards Interpretable Mental Health Analysis with Large Language Models
    Yang, Kailai
    Ji, Shaoxiong
    Zhang, Tianlin
    Xie, Qianqian
    Kuang, Ziyan
    Ananiadou, Sophia
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 6056 - 6077
  • [10] Emergency psychiatric care and mental health triage
    Buyukbayram, Ayse
    Engin, Esra
    JOURNAL OF PSYCHIATRIC NURSING, 2018, 9 (01): : 61 - 67