Neighbor-Enhanced Representation Learning for Link Prediction in Dynamic Heterogeneous Attributed Networks

被引:2
|
作者
Wei, Xiangyu [1 ]
Wang, Wei [1 ,2 ]
Zhang, Chongsheng [3 ]
Ding, Weiping [4 ]
Wang, Bin [5 ]
Qian, Yaguan [6 ]
Han, Zhen [1 ]
Su, Chunhua [7 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Transp, Beijing, Peoples R China
[2] Xi An Jiao Tong Univ, Minist Educ, Key Lab Intelligent Networks & Network Secur, Xian, Peoples R China
[3] Henan Univ, Sch Comp & Informat Engn, Kaifeng, Henan, Peoples R China
[4] Nantong Univ, Sch Informat Sci & Technol, Nantong, Jiangsu, Peoples R China
[5] Zhejiang Key Lab Multidimens Percept Technol Appli, Hangzhou, Zhejiang, Peoples R China
[6] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
[7] Univ Aizu, Dept Comp Sci & Engn, Div Comp Sci, Aizu Wakamatsu, Japan
基金
中国国家自然科学基金;
关键词
Dynamic link prediction; network representations learning; graph neural networks;
D O I
10.1145/3676559
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic link prediction aims to predict future connections among unconnected nodes in a network. It can be applied for friend recommendations, link completion, and other tasks. Network representation learning algorithms have demonstrated considerable effectiveness in various prediction tasks. However, most network representation learning algorithms are based on homogeneous networks and static networks for link prediction that do not consider rich semantic and dynamic information. Additionally, existing dynamic network representation learning methods neglect the neighborhood interaction structure of the node. In this work, we design a neighbor-enhanced dynamic heterogeneous attributed network embedding method (NeiDyHNE) for link prediction. In light of the impressive achievements of the heuristic methods, we learn the information of common neighbors and neighbors' interaction in heterogeneous networks to preserve the neighbors proximity and common neighbors proximity. NeiDyHNE encodes the attributes and neighborhood structure of nodes as well as the evolutionary features of the dynamic network. More specifically, NeiDyHNE consists of the hierarchical structure attention module and the convolutional temporal attention module. The hierarchical structure attention module captures the rich features and semantic structure of nodes. The convolutional temporal attention module captures the evolutionary features of the network over time in dynamic heterogeneous networks. We evaluate our method and various baseline methods on the dynamic link prediction task. Experimental results demonstrate that our method is superior to baseline methods in terms of accuracy.
引用
收藏
页数:704
相关论文
共 50 条
  • [1] Robust representation learning for heterogeneous attributed networks
    Fu, Yue
    Yu, Xinyi
    Wu, Yongliang
    Ding, Xueyi
    Zhao, Shuliang
    INFORMATION SCIENCES, 2023, 628 : 22 - 49
  • [2] Streaming Link Prediction on Dynamic Attributed Networks
    Li, Jundong
    Cheng, Kewei
    Wu, Liang
    Liu, Huan
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 369 - 377
  • [3] Attributed Network Representation Learning Approaches for Link Prediction
    Masrour, Farzan
    Tan, Pang-Ning
    Esfahanian, Abdol-Hossein
    VanDam, Courtland
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 560 - 563
  • [4] An effective representation learning model for link prediction in heterogeneous information networks
    Kumar, Vishnu
    Krishna, P. Radha
    COMPUTING, 2024, 106 (07) : 2185 - 2210
  • [5] Lifelong representation learning in dynamic attributed networks
    Wei, Hao
    Hu, Guyu
    Bai, Wei
    Xia, Shiming
    Pan, Zhisong
    NEUROCOMPUTING, 2019, 358 : 1 - 9
  • [6] AHNA: Adaptive representation learning for attributed heterogeneous networks
    Shu, Lin
    Chen, Chuan
    Xing, Xingxing
    Liao, Xiangke
    Zheng, Zibin
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (02) : 1157 - 1185
  • [7] Hierarchical neighbor-enhanced graph contrastive learning for recommendation
    Wei, Hongjie
    Wang, Junli
    Ji, Yu
    Guang, Mingjian
    Yan, Chungang
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [8] Heterogeneous hypergraph representation learning for link prediction
    Zhao, Zijuan
    Yang, Kai
    Guo, Jinli
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (10):
  • [9] Deep attributed network representation learning via enhanced local attribute neighbor
    Han, Lili
    Zhao, Hui
    NEUROCOMPUTING, 2025, 631
  • [10] Link Prediction on Dynamic Heterogeneous Information Networks
    Kong, Chao
    Li, Hao
    Zhang, Liping
    Zhu, Haibei
    Liu, Tao
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, 2019, 11917 : 339 - 350