Liquid and gas permeabilities of nanostructured layers: Three-dimensional lattice Boltzmann simulation

被引:3
|
作者
Ren, Guofu [1 ,2 ]
Qu, Zhiguo [1 ]
Hai, Yanfeng [2 ]
Wang, Yun [2 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian 710049, Peoples R China
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Renewable Energy Resources Lab RERL, Irvine, CA 92697 USA
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Nanostructure; Lattice Boltzmann method; Slip; No-slip; Permeability; MEMBRANE FUEL-CELL; MICRO-POROUS LAYER; PORE-SIZE DISTRIBUTION; NON-DARCY FLOW; MICROPOROUS LAYER; DIFFUSION LAYERS; 2-PHASE TRANSPORT; APPARENT PERMEABILITY; PERFORMANCE; MODEL;
D O I
10.1016/j.ijhydene.2024.10.265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid water and gas permeabilities in nanostructured catalyst layers (CLs) (pore size similar to 10-150 nm) and microporous layers (MPLs) (pore size similar to 50 nm-5 mu m) are crucial to reduce the mass transport loss in proton exchange membrane fuel cells (PEMFCs). Experimental measurement of their permeabilities poses great challenges due to their brittle and thin characteristics. Presently, considerable discrepancy exists in the reported permeability values for CLs and MPLs in the literature with variation spanning several orders of magnitude. This study digitally reconstructed various nanostructures of similar pore size as CLs and MPLs to calculate their permeabilities using the Lattice Boltzmann Method (LBM) based on no-slip (e.g. for liquid water flow in MPL and CL's secondary pores) or slip condition (e.g. for gas flow in MPL). Analysis was performed to evaluate the range of pore size in nanostructures for the two boundary conditions. A comprehensive investigation was conducted under various parameters such as the Reynolds number (Re), sphere diameter, porosity, and pore structure. The results revealed that permeability exhibits an increasing trend with the diameter and porosity. The predicted permeability of randomly arranged spheres agrees well with established correlations. The random sphere structure demonstrates higher permeability than their body-centered cubic (BCC) and face-centered cubic (FCC) counterparts. Under slip boundary condition, the permeability was enhanced, compared to the no-slip condition. This study's novelty lies in using distinct boundary conditions to assess the permeabilities of liquid and air, based on flow pattern analysis in the CL and MPL pore structures. A new empirical correlation describing the influence of the Knudsen number (Kn) Kn ) on the slip permeability was developed, exhibiting consistency with simulation across the entire porosity spectrum.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [1] A Lattice Boltzmann Method for Simulation of a Three-Dimensional Drop Impact on a Liquid Film
    Zi-yuan Shi
    Yong-hua Yan
    Fan Yan
    Yue-hong Qian
    Guo-hui Hu
    Journal of Hydrodynamics, 2008, 20 : 267 - 272
  • [2] A LATTICE BOLTZMANN METHOD FOR SIMULATION OF A THREE-DIMENSIONAL DROP IMPACT ON A LIQUID FILM
    Shi Zi-yuan
    Yan Yong-hua
    Yang Fan
    Qian Yue-hong
    Hu Guo-hui
    JOURNAL OF HYDRODYNAMICS, 2008, 20 (03) : 267 - 272
  • [3] A LATTICE BOLTZMANN METHOD FOR SIMULATION OF A THREE-DIMENSIONAL DROP IMPACT ON A LIQUID FILM
    SHI Zi-yuan Shanghai Institute of Applied Mathematics and Mechanics
    Journal of Hydrodynamics, 2008, (03) : 267 - 272
  • [4] Three-Dimensional Lattice Boltzmann Simulation of Liquid Water Transport in Porous Layer of PEMFC
    Han, Bo
    Ni, Meng
    Meng, Hua
    ENTROPY, 2016, 18 (01):
  • [5] Hybrid Lattice Boltzmann Simulation of Three-Dimensional Natural Convection
    Nee, Alexander
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2021, 50 (04) : 280 - 296
  • [6] Lattice Boltzmann study of three-dimensional gas microchannel flows
    Jeong, Namgyun
    Lin, Ching-Long
    Choi, Do Hyung
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (09) : 1749 - 1759
  • [7] Three-dimensional cavitation simulation using lattice Boltzmann method
    Zhang Xin-Ming
    Zhou Chao-Ying
    Shams, Islam
    Liu Jia-Qi
    ACTA PHYSICA SINICA, 2009, 58 (12) : 8406 - 8414
  • [8] Lattice Boltzmann simulation of flows in a three-dimensional porous structure
    Inamuro, T
    Yoshino, M
    Ogino, F
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (07) : 737 - 748
  • [9] Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces
    Hu Meng-Dan
    Zhang Qing-Yu
    Sun Dong-Ke
    Zhu Ming-Fang
    ACTA PHYSICA SINICA, 2019, 68 (03)
  • [10] Three-dimensional binary-liquid lattice Boltzmann simulation of microchannels with rectangular cross sections
    Kuzmin, A.
    Januszewski, M.
    Eskin, D.
    Mostowfi, F.
    Derksen, J. J.
    CHEMICAL ENGINEERING JOURNAL, 2011, 178 : 306 - 316