Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials

被引:0
|
作者
Fernández, Mauricio [1 ,2 ]
Fritzen, Felix [3 ]
Weeger, Oliver [1 ]
机构
[1] Cyber-Physical Simulation, Technical University of Darmstadt, Darmstadt, Germany
[2] Multiscale and Data-Driven Material Modeling, ACCESS e.V., Aachen, Germany
[3] Data Analytics in Engineering, University of Stuttgart, Stuttgart, Germany
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning - Topology - Aspect ratio - Deformation - Elasticity - Anisotropy - Cytology - Neural networks - Cells - Metamaterials
引用
收藏
页码:577 / 609
相关论文
共 50 条
  • [1] Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials
    Fernandez, Mauricio
    Fritzen, Felix
    Weeger, Oliver
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (02) : 577 - 609
  • [2] Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity
    Meng, Shuangshuang
    Yousefi, Ali Akbar Karkhaneh
    Avril, Stephane
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 434
  • [3] Application of Machine Learning in Thermodynamic System Modeling and Optimization
    Wang, Li
    Liu, Chang
    Huo, Ran
    Lu, Xin
    Yang, Yue
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (05) : 1613 - 1621
  • [4] A compressible anisotropic nonlinear elastic material: application to the finite element modeling of the periodontal ligament
    Limbert, G
    Middleton, J
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1762 - 1765
  • [5] Using structural tensors for inelastic material modeling in the finite strain regime - A novel approach to anisotropic damage
    Reese, S.
    Brepols, T.
    Fassin, M.
    Poggenpohl, L.
    Wulfinghoff, S.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 146
  • [6] Using structural tensors for inelastic material modeling in the finite strain regime – A novel approach to anisotropic damage
    Reese, S.
    Brepols, T.
    Fassin, M.
    Poggenpohl, L.
    Wulfinghoff, S.
    Reese, S. (stefanie.reese@rwth-aachen.de), 1600, Elsevier Ltd (146):
  • [7] Machine learning-based design and optimization of curved beams for multistable structures and metamaterials
    Liu, Fan
    Jiang, Xihang
    Wang, Xintao
    Wang, Lifeng
    EXTREME MECHANICS LETTERS, 2020, 41
  • [8] Multistage Collaborative Machine Learning and its Application to Antenna Modeling and Optimization
    Wu, Qi
    Wang, Haiming
    Hong, Wei
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (05) : 3397 - 3409
  • [9] Machine learning predictions on the compressive stress-strain response of lattice-based metamaterials
    Xiao, Lijun
    Shi, Gaoquan
    Song, Weidong
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 300
  • [10] Application of machine learning to a material library for modeling of relationships between material properties and tablet properties
    Hayashi, Yoshihiro
    Nakano, Yuri
    Marumo, Yuki
    Kumada, Shungo
    Okada, Kotaro
    Onuki, Yoshinori
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 609