Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors

被引:1
|
作者
Zhao, Jinbin [1 ,2 ]
Wang, Jiantao [2 ,3 ]
He, Dongchang [2 ,3 ]
Li, Junlin [1 ]
Sun, Yan [2 ]
Chen, Xing-Qiu [2 ]
Liu, Peitao [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
hydride superconductor; superconducting transition temperature; machine learning; random forest; first-principles calculation;
D O I
10.11900/0412.1961.2024.00140
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The discovery of hydride superconductors with high critical transition temperature (T-c) un der high pressures has received considerable interest in developing superconducting materials that can operate at room temperature and ambient pressure. Although first-principles methods can accurately predict the critical temperature of hydride superconductors, the computational demands are significant because of the expensive calculation of electron- phonon coupling. Hence, constructing an accurate and efficient model for predicting T-c is highly desirable. In this study, a simple and interpretable machine learning (ML) model was developed using the random forest algorithm, which enables the selection of important features based on their importance. Using four physics-based features, namely, the standard deviation of the number of valence electrons, mean covalent radii, range of the Mendeleev number of constituent elements, and hydrogen fraction of the total density of states at the Fermi energy, the optimal ML model achieves high accuracy, with a mean absolute error of 24.3 K and a root-mean-square error of 33.6 K. The ML model developed in this study shows great application potential for high-throughput screening, thereby expediting the discovery of high-T-c superconducting hydrides.
引用
收藏
页码:1418 / 1428
页数:11
相关论文
共 88 条
  • [1] TRANSITION-TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS REANALYZED
    ALLEN, PB
    DYNES, RC
    [J]. PHYSICAL REVIEW B, 1975, 12 (03): : 905 - 922
  • [2] METALLIC HYDROGEN - A HIGH-TEMPERATURE SUPERCONDUCTOR
    ASHCROFT, NW
    [J]. PHYSICAL REVIEW LETTERS, 1968, 21 (26) : 1748 - &
  • [3] Hydrogen dominant metallic alloys: High temperature superconductors?
    Ashcroft, NW
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (18) : 187002 - 1
  • [4] MICROSCOPIC THEORY OF SUPERCONDUCTIVITY
    BARDEEN, J
    COOPER, LN
    SCHRIEFFER, JR
    [J]. PHYSICAL REVIEW, 1957, 106 (01): : 162 - 164
  • [5] POSSIBLE HIGH-TC SUPERCONDUCTIVITY IN THE BA-LA-CU-O SYSTEM
    BEDNORZ, JG
    MULLER, KA
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 64 (02): : 189 - 193
  • [6] Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors
    Belli, Francesco
    Novoa, Trinidad
    Contreras-Garcia, J.
    Errea, Ion
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] The 2021 room-temperature superconductivity roadmap
    Boeri, Lilia
    Hennig, Richard
    Hirschfeld, Peter
    Profeta, Gianni
    Sanna, Antonio
    Zurek, Eva
    Pickett, Warren E.
    Amsler, Maximilian
    Dias, Ranga
    Eremets, Mikhail, I
    Heil, Christoph
    Hemley, Russell J.
    Liu, Hanyu
    Ma, Yanming
    Pierleoni, Carlo
    Kolmogorov, Aleksey N.
    Rybin, Nikita
    Novoselov, Dmitry
    Anisimov, Vladimir
    Oganov, Artem R.
    Pickard, Chris J.
    Bi, Tiange
    Arita, Ryotaro
    Errea, Ion
    Pellegrini, Camilla
    Requist, Ryan
    Gross, E. K. U.
    Margine, Elena Roxana
    Xie, Stephen R.
    Quan, Yundi
    Hire, Ajinkya
    Fanfarillo, Laura
    Stewart, G. R.
    Hamlin, J. J.
    Stanev, Valentin
    Gonnelli, Renato S.
    Piatti, Erik
    Romanin, Davide
    Daghero, Dario
    Valenti, Roser
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (18)
  • [8] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [9] Sampling the Materials Space for Conventional Superconducting Compounds
    Cerqueira, Tiago F. T.
    Sanna, Antonio
    Marques, Miguel A. L.
    [J]. ADVANCED MATERIALS, 2024, 36 (01)
  • [10] Enhancement of superconducting properties in the La-Ce-H system at moderate pressures
    Chen, Wuhao
    Huang, Xiaoli
    Semenok, Dmitrii V.
    Chen, Su
    Zhou, Di
    Zhang, Kexin
    Oganov, Artem R.
    Cui, Tian
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)