Robust super-resolution classifier by nonlinear optics

被引:0
|
作者
Darji, Ishan [1 ,2 ]
Kumar, Santosh [1 ,2 ]
Huang, Yu-ping [1 ,2 ]
机构
[1] Stevens Inst Technol, Dept Phys, Hoboken, NJ 07030 USA
[2] Stevens Inst Technol, Ctr Quantum Sci & Engn, Hoboken, NJ 07030 USA
基金
美国国家航空航天局;
关键词
QUANTUM; RESOLUTION;
D O I
10.1364/OL.537295
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spatial-mode projective measurements could achieve superresolution in remote sensing and imaging, yet their performance is usually sensitive to the parameters of the target scenes. We propose and demonstrate a robust classifier of close-by light sources using optimized mode projection via nonlinear optics. Contrary to linear-optics based methods using the first few Hermite-Gaussian (HG) modes for the projection, here the projection modes are optimally tailored by shaping the pump wave to drive the nonlinear-optical process. This minimizes modulation losses and allows high flexibility in designing those modes for robust and efficient measurements. We test this classifier by discriminating one light source and two sources separated well within the Rayleigh limit without prior knowledge of the exact centroid or brightness. Our results show a classification fidelity of over 80% even when the centroid is misaligned by half the source separation, or when one source is four times stronger than the other. (c) 2024 Optica Publishing Group. All
引用
收藏
页码:5419 / 5422
页数:4
相关论文
共 50 条
  • [1] Robust super-resolution
    Zomet, A
    Rav-Acha, A
    Peleg, S
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 645 - 650
  • [2] Adaptive optics in super-resolution microscopy
    Jingyu Wang
    Yongdeng Zhang
    BiophysicsReports, 2021, 7 (04) : 267 - 279
  • [3] Super-resolution optics for Virtual Reality
    Grabovickic, Dejan
    Benitez, Pablo
    Minano, Juan C.
    Zamora, Pablo
    Buljan, Marina
    Narasimhan, Bharathwaj
    Nikolic, Milena I.
    Lopez, Jesus
    Gorospe, Jorge
    Sanchez, Eduardo
    Lastres, Carmen
    Mohedano, Ruben
    DIGITAL OPTICAL TECHNOLOGIES 2017, 2017, 10335
  • [4] Fast and robust super-resolution
    Farsiu, S
    Robinson, D
    Elad, M
    Milanfar, P
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 291 - 294
  • [5] Super-resolution compressive imaging with anamorphic optics
    Farber, Vladimir
    August, Yitzhak
    Stern, Adrian
    OPTICS EXPRESS, 2013, 21 (22): : 25851 - 25863
  • [6] Aberrations and adaptive optics in super-resolution microscopy
    Booth, Martin
    Andrade, Debora
    Burke, Daniel
    Patton, Brian
    Zurauskas, Mantas
    MICROSCOPY, 2015, 64 (04) : 251 - 261
  • [7] Super-resolution and apodization with discrete adaptive optics
    Cagigal, M. P.
    Fuentes, A.
    Canales, V. F.
    Valle, P. J.
    Cagigas, M. A.
    Castellanos, O.
    OPTICS LETTERS, 2023, 48 (14) : 3689 - 3692
  • [8] Robust Dual Images Super-resolution
    Zhang, Xiaohong
    Zhang, Yun
    Qian, Guiping
    Qin, Aihong
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [9] Towards Robust Speech Super-Resolution
    Wang, Heming
    Wang, DeLiang
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 2058 - 2066
  • [10] Fast Super-Resolution Algorithm using ELBP Classifier
    Choi, Dong-yoon
    Song, Byung Cheol
    2015 VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2015,