Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models

被引:0
|
作者
Zhou, Zhenxiong [1 ]
Duan, Boheng [2 ]
Ren, Kaijun [2 ]
Ni, Weicheng [2 ]
Cao, Ruixin [2 ]
机构
[1] Natl Univ Def Technol, Sch Comp Sci & Technol, Changsha 410000, Peoples R China
[2] Natl Univ Def Technol, Sch Meteorol & Oceanog, Changsha 410000, Peoples R China
关键词
FY-3E; GNSS-R; Significant Wave Height; ViT; retrieval; WIND;
D O I
10.3390/rs16183468
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Significant Wave Height (SWH) is a crucial parameter in oceanographic research, essential for understanding various marine and atmospheric processes. Traditional methods for obtaining SWH, such as ship-based and buoy measurements, face limitations like limited spatial coverage and high operational costs. With the advancement of Global Navigation Satellite Systems reflectometry (GNSS-R) technology, a new method for retrieving SWH has emerged, demonstrating promising results. This study utilizes Radio occultation sounder (GNOS) data from the FY-3E satellite and incorporates the latest Vision Transformer (ViT) technology to investigate GNSS-R-based SWH retrieval. We designed and evaluated various deep learning models, including ANN-Wave, CNN-Wave, Hybrid-Wave, Trans-Wave, and ViT-Wave. Through comparative training using ERA5 data, the ViT-Wave model was identified as the optimal retrieval model. The ViT-Wave model achieved a Root Mean Square Error (RMSE) accuracy of 0.4052 m and Mean Absolute Error (MAE) accuracy of 0.2700 m, significantly outperforming both traditional methods and newer deep learning approaches utilizing Cyclone Global Navigation Satellite Systems (CYGNSS) data. These results underscore the potential of integrating GNSS-R technology with advanced deep-learning models to enhance SWH retrieval accuracy and reliability in oceanographic research.
引用
收藏
页数:22
相关论文
共 20 条
  • [1] Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters
    Bu, Jinwei
    Yu, Kegen
    Wang, Qiulan
    Li, Linghui
    Liu, Xinyu
    Zuo, Xiaoqing
    Chang, Jun
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (07): : 1321 - 1335
  • [2] The Study on Retrieval Technique of Significant Wave Height Using Airborne GNSS-R
    Xu, Fei
    Sun, Xiechang
    Liu, Xinning
    Li, Ruidong
    PROCEEDINGS OF THE 28TH CONFERENCE OF SPACECRAFT TT&C TECHNOLOGY IN CHINA: OPENNESS, INTEGRATION AND INTELLIGENT INTERCONNECTION, 2018, 445 : 401 - 411
  • [3] Analysis of factors influencing significant wave height retrieval and performance improvement in spaceborne GNSS-R
    Li, Zheng
    Guo, Fei
    Zhang, Xiaohong
    Guo, Yu
    Zhang, Zhiyu
    GPS SOLUTIONS, 2024, 28 (02)
  • [4] Analysis of factors influencing significant wave height retrieval and performance improvement in spaceborne GNSS-R
    Zheng Li
    Fei Guo
    Xiaohong Zhang
    Yu Guo
    Zhiyu Zhang
    GPS Solutions, 2024, 28
  • [5] Assessment of FY-3E GNOS-II GNSS-R Global Wind Product
    Huang, Feixiong
    Xia, Junming
    Yin, Cong
    Zhai, Xiaochun
    Xu, Na
    Yang, Guanglin
    Bai, Weihua
    Sun, Yueqiang
    Du, Qifei
    Liao, Mi
    Hu, Xiuqing
    Zhang, Peng
    Duan, Lichang
    Liu, Yan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7899 - 7912
  • [6] Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model
    Bu J.
    Yu K.
    Han S.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1920 - 1930
  • [7] Global Significant Wave Height Retrieval From Spaceborne GNSS-R Using Transformers
    Qiao, Xin
    Huang, Weimin
    OCEANS 2024 - SINGAPORE, 2024,
  • [8] Improving GNSS-R Sea Surface Wind Speed Retrieval from FY-3E Satellite Using Multi-task Learning and Physical Information
    Zhou, Zhenxiong
    Duan, Boheng
    Ren, Kaijun
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT VI, 2024, 14452 : 357 - 369
  • [9] WaveTransNet: A Transformer-Based Network for Global Significant Wave Height Retrieval From Spaceborne GNSS-R Data
    Qiao, Xin
    Huang, Weimin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] Sensitivity Study of Multiconstellation GNSS-R to Soil Moisture and Surface Roughness Using FY-3E GNOS-II Data
    Ma, Zhongmin
    Camps, Adriano
    Park, Hyuk
    Zhang, Shuangcheng
    Li, Xiaojun
    Wigneron, Jean-Pierre
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 413 - 423