Knowledge graph enhanced neural collaborative recommendation

被引:49
|
作者
Sang L. [1 ,2 ,3 ]
Xu M. [2 ]
Qian S. [4 ]
Wu X. [1 ,3 ,5 ]
机构
[1] Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei
[2] Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney
[3] School of Computer Science and Information Engineering, Hefei University of Technology, Hefei
[4] Institute of Automation, Chinese Academy of Sciences, Beijing
[5] Mininglamp Academy of Sciences, Mininglamp Technology, Beijing
基金
中国国家自然科学基金;
关键词
Attention mechanism; Graph convolutional networks; Knowledge graph; Neural collaborative filtering; Recommendation system;
D O I
10.1016/j.eswa.2020.113992
中图分类号
学科分类号
摘要
Existing neural collaborative filtering (NCF) recommendation methods suffer from severe sparsity problem. Knowledge Graph (KG), which commonly consists of fruitful connected facts about items, presents an unprecedented opportunity to alleviate the sparsity problem. However, pure NCF models can hardly model the high-order connectivity in KG, and ignores complex pairwise correlations between user/item embedding dimensions. To address these problems, we propose a novel Knowledge graph enhanced Neural Collaborative Recommendation (K-NCR) framework, which effectively combines user–item interaction information and auxiliary knowledge information for recommendation task into three parts: (1) For items, the proposed propagating model learns the representation of item entity. It recursively aggregates information from its multi-hop neighbours in KG, and employs an attention mechanism to discriminate the importance of the relation type to mine users’ potential preferences. (2) For users, another heterogeneous attention weights are leveraged to strengthen the embedding learning of users. (3) The user and item embeddings are then fed into a newly designed two-dimensional interaction map with convolutional hidden layers to model the complex pairwise correlations between their embedding dimensions explicitly. Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our K-NCR framework. © 2020
引用
收藏
相关论文
共 50 条
  • [1] Neural Collaborative Recommendation with Knowledge Graph
    Sang, Lei
    Li, Lei
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 203 - 210
  • [2] Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding
    Shokrzadeh, Zeinab
    Feizi-Derakhshi, Mohammad-Reza
    Balafar, Mohammad -Ali
    Mohasefi, Jamshid Bagherzadeh
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [3] Knowledge Enhanced Graph Neural Networks for Explainable Recommendation
    Lyu, Ziyu
    Wu, Yue
    Lai, Junjie
    Yang, Min
    Li, Chengming
    Zhou, Wei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4954 - 4968
  • [4] Neural Collaborative Recommendation Algorithm Based on Attention Mechanism and Knowledge Graph
    Zhang, Chuang
    Wang, Wei
    Du, Yuxuan
    Zheng, Xiaoli
    He, Tingting
    Computer Engineering and Applications, 2023, 59 (22) : 111 - 120
  • [5] An Enhanced Neural Graph based Collaborative Filtering with Item Knowledge Graph
    Sangeetha, M.
    Thiagarajan, Meera Devi
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2022, 17 (04)
  • [6] Knowledge-Enhanced Graph Neural Networks for Sequential Recommendation
    Wang, Baocheng
    Cai, Wentao
    INFORMATION, 2020, 11 (08)
  • [7] A Collaborative Recommendation Model Based on Enhanced Graph Convolutional Neural Network
    Wang L.
    Xiong Y.
    Li Y.
    Liu Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (09): : 1987 - 1996
  • [8] Enhancing Collaborative Features with Knowledge Graph for Recommendation
    Zhu, Lingang
    Zhang, Yi
    Li, Gang
    WEB AND BIG DATA, PT III, APWEB-WAIM 2023, 2024, 14333 : 188 - 203
  • [9] Community Enhanced Knowledge Graph for Recommendation
    He, Zhen-Yu
    Wang, Chang-Dong
    Wang, Jinfeng
    Lai, Jian-Huang
    Tang, Yong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (05) : 5789 - 5802
  • [10] Item enhanced graph collaborative network for collaborative filtering recommendation
    Huang, Haichi
    Tian, Xuan
    Luo, Sisi
    Shi, Yanli
    COMPUTING, 2022, 104 (12) : 2541 - 2556