Characterization of magnetically stabilized hinges for origami-inspired mechanisms

被引:0
|
作者
Pruett, H. T. [1 ]
Klocke, P. [1 ]
Howell, L. [1 ]
Magleby, S. [1 ]
机构
[1] Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA
关键词
origami; compliant mechanisms; surrogate fold; ANTENNAS;
D O I
10.1098/rsta.2024.0008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Origami-inspired mechanisms provide opportunities for deployable systems, including reflectarray antennas. There is a need for approaches to deploy and stabilize such arrays. Magnetic mechanisms show promise for meeting those needs and how methods for modelling their behaviour would facilitate their design and analysis. We demonstrate the existence of bistability in select configurations of magnetically stabilized hinges and characterize their equilibrium positions as a function of parameters estimated from simulation data for these mechanisms. Other relevant information such as potential energy, axial force data, angular position of unstable equilibria and transition values from bistability to monostability are also modelled. The results are verified through experimental torque and stability data for selected configurations of the mechanisms.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hinges for origami-inspired structures by multimaterial additive manufacturing
    Wagner, Marius A.
    Huang, Jian-Lin
    Okle, Philipp
    Paik, Jamie
    Spolenak, Ralph
    MATERIALS & DESIGN, 2020, 191
  • [2] Design and Analysis of a Hybrid Actuator With Resilient Origami-Inspired Hinges
    Yoo, Seunghoon
    Park, Hyunjun
    Cha, Youngsu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2128 - 2135
  • [3] Folding of sealed origami-inspired capsule with rigid panels and hyperelastic hinges
    Xiao, Liping
    Hong, Yilun
    Wang, Ke
    Zhao, Haifeng
    THIN-WALLED STRUCTURES, 2023, 190
  • [4] Deployable lenticular stiffeners for origami-inspired mechanisms
    Yellowhorse, Alden
    Howell, Larry L.
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2018, 46 (05) : 634 - 649
  • [5] From rigid to amorphous folding behavior in origami-inspired metamaterials with bistable hinges
    Iniguez-Rabago, Agustin
    Overvelde, Johannes T. B.
    EXTREME MECHANICS LETTERS, 2022, 56
  • [6] EVALUATING COMPLIANT HINGE GEOMETRIES FOR ORIGAMI-INSPIRED MECHANISMS
    Delimont, Isaac L.
    Magleby, Spencer P.
    Howell, Larry L.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2014, VOL 5B, 2014,
  • [7] Origami-inspired Prototyping
    Griffith, Saul
    Calisch, Sam
    Gilman, Tucker
    Gaebler, Frank
    R&D MAGAZINE, 2012, 54 (06): : 24 - 25
  • [8] THREE APPROACHES FOR MANAGING STIFFNESS IN ORIGAMI-INSPIRED MECHANISMS
    Yellowhorse, Alden
    Howell, Larry L.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 5B, 2018,
  • [9] Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
    Delimont, Isaac L.
    Magleby, Spencer P.
    Howell, Larry L.
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2015, 7 (01):
  • [10] Origami-inspired sacrificial joints for folding compliant mechanisms
    Nelson, Todd G.
    Avila, Alex
    Howell, Larry L.
    Herder, Just L.
    Machekposhti, Davood Farhadi
    MECHANISM AND MACHINE THEORY, 2019, 140 : 194 - 210