Atomic layer deposition of transition metal chalcogenide TaSx using Ta[N(CH3)2]3[NC(CH3)3] precursor and H2S plasma

被引:0
|
作者
Deijkers, J. H. [1 ]
Thepass, H. [1 ]
Verheijen, M. A. [1 ,2 ]
Sprey, H. [3 ]
Maes, J. W. [3 ]
Kessels, W. M. M. [1 ]
Mackus, A. J. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys & Sci Educ, NL-5600MB Eindhoven, Netherlands
[2] Eurofins Mat Sci BV, High Tech Campus, NL-5656 AE Eindhoven, Netherlands
[3] ASM, B-3001 Leuven, Belgium
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2024年 / 42卷 / 06期
关键词
TANTALUM DISULFIDE; PHASE; NITRIDE;
D O I
10.1116/6.0003971
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As a transition metal chalcogenide, tantalum sulfide (TaSx) is of interest for semiconductor device applications, for example, as a diffusion barrier in Cu interconnects. For deposition of ultrathin nanolayers in such demanding 3D structures, a synthesis method with optimal control is required, and therefore, an atomic layer deposition (ALD) process for TaSx was developed. ALD using (tert)-butylimidotris(dimethylamido)tantalum (Ta[N(CH3)(2)]3[NC(CH3)(3)]) as the precursor and an H2S-based plasma as the coreactant results in linear growth of TaSx films as a function of the number of cycles for all temperatures in the range 150-400 degrees C with growth per cycle values between 1.17 +/- 0.03 & Aring; and 0.87 +/- 0.08 & Aring;. Saturation of the precursor and plasma dose times, established at 300 degrees C, was reached after 20 and 10 s, respectively. Variation of the table temperature or the plasma composition offers the possibility to tune the film properties. At 300 degrees C, amorphous TaS3 films were grown, while addition of H-2 to the plasma led to polycrystalline TaS2 films. The difference in sulfur content in the films correlates to a change in resistivity, where the least resistive film had the lowest S content.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Planarity of N,N-dimethylacetamide, (CH3)(2)NC(O)CH3
    Mack, HG
    Oberhammer, H
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (15) : 3567 - 3570
  • [2] Atomic Layer Deposition of GeTe Films Using Ge{N[Si(CH3)3]2}2, {(CH3)3Si}2Te, and Methanol
    Gwon, Taehong
    Eom, Taeyong
    Yoo, Sijung
    Lee, Han-Koo
    Cho, Deok-Yong
    Kim, Moo-Sung
    Buchanan, Iain
    Xiao, Manchao
    Ivanov, Sergei
    Hwang, Cheol Seong
    CHEMISTRY OF MATERIALS, 2016, 28 (19) : 7158 - 7166
  • [3] Atomic Layer Deposition of SnTe Thin Film Using Sn(N(CH3)2)4 and Te(Si(CH3)3)2 with Ammonia Coinjection
    Lee, Yoon Kyeung
    Park, Eui-Sang
    Yoo, Chanyoung
    Kim, Woohyun
    Jeon, Jeong Woo
    Ha, Manick
    Hwang, Cheol Seong
    CRYSTAL GROWTH & DESIGN, 2020, 20 (07) : 4649 - 4656
  • [4] Systematic Characterization of Gas Phase Binary Pre-Nucleation Complexes Containing H2SO4 + X, [X = NH3, (CH3)NH2, (CH3)2NH, (CH3)3N, H2O, (CH3)OH, (CH3)2O, HF, CH3F, PH3, (CH3)PH2, (CH3)2PH, (CH3)3P, H2S, (CH3)SH, (CH3)2S, HCI, (CH3)CI)]. A Computational Study
    Sebastianelli, Paolo
    Cometto, Pablo M.
    Pereyra, Rodolfo G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (08): : 2116 - 2128
  • [5] Structures of Pt2(CH3)4(S(CH3)2)2 and [PtPh2(S(CH3)2)]n (n=2, 3)
    Song, DT
    Wang, SN
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2002, 648 (1-2) : 302 - 305
  • [6] COMPLEXES OF (HYDROXYLAMIDO-O,N)MOLYBDENUM(VI) - PREPARATION AND CRYSTAL-STRUCTURES OF [MOO(H(CH3)NO)2(HNC(S)N(CH3)O)] AND [MOO(H(CH3)NO)(HNC(S)N(CH3)O)(H2NC(S)N(CH3)O)].H2O
    WIEGHARDT, K
    HOFER, E
    HOLZBACH, W
    NUBER, B
    WEISS, J
    INORGANIC CHEMISTRY, 1980, 19 (10) : 2927 - 2932
  • [7] SURFACE ORGANOMETALLIC CHEMISTRY OF INORGANIC OXIDES - THE SYNTHESIS AND CHARACTERIZATION OF (SIO)TA(=CHC(CH3)(3))(CH2C(CH3)(3))(2) AND (SIO)(2)TA(=CHC(CH3)(3))(CH2C(CH3)(3))
    DUFAUD, V
    NICCOLAI, GP
    THIVOLLECAZAT, J
    BASSET, JM
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (15) : 4288 - 4294
  • [8] EXCESS MOLAR VOLUMES OF [XCH(3)(CH2)(4)OH+(1-X)(CH3COCH(CH3)CH3 OR CH3COCH2CH(CH3)CH3 OR CH3CH(OH)CH(CH3)CH3 OR CH3CH(CH3)OCOCH3 CH3CH2CH(CH3)OCOCH3 OR CH3(CH2)(2)CH(CH3)OCOCH3 OR CH3CH(CH3)CH(CH3)CH3)] AT TEMPERATURES FROM 288.15 K TO 328.15 K AND EACH AT SATURATION PRESSURE
    KUMAR, P
    BHAISARE, MP
    KUDCHADKER, AP
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1994, 26 (02): : 197 - 203
  • [9] Synthesis, NMR spectra and structure of [(CH3)2Ga{μ-P(H)Si(CH3)3}2Ga(CH3)2{μ-P(Si(CH3)3)2}Ga(CH3)2]
    Schaller, A
    Hausen, HD
    Weidlein, J
    Fischer, P
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2000, 626 (03): : 616 - 618
  • [10] MULTINUCLEAR NMR-SPECTRA OF (CH3)3SNCH2SN(CH3)3, (CH3)3SNCH2GE(CH3)3, (CH3)3SNCH2SI(CH3)3, (CH3)3SNCH2C(CH3)3 AND SOME HALOGENATED DERIVATIVES
    HAWKER, DW
    WELLS, PR
    ORGANIC MAGNETIC RESONANCE, 1984, 22 (05): : 280 - 285