Modeling of fluid-rigid body interaction in an electrically conducting fluid

被引:0
|
作者
Scherz J. [1 ,2 ,3 ]
Schlömerkemper A. [1 ]
机构
[1] Institute of Mathematics, University of Würzburg
[2] Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University in Prague
[3] Mathematical Institute, Czech Academy of Sciences
关键词
fluid-solid interactions; magnetohydrodynamics and electrohydrodynamics; Maxwell equations; Navier–Stokes equations;
D O I
10.1002/gamm.202470012
中图分类号
学科分类号
摘要
We derive a mathematical model for the motion of several insulating rigid bodies through an electrically conducting fluid. Starting from a universal model describing this phenomenon in generality, we elaborate (simplifying) physical assumptions under which a mathematical analysis of the model becomes feasible. Our main focus lies on the derivation of the boundary and interface conditions for the electromagnetic fields as well as the derivation of the magnetohydrodynamic approximation carried out via a nondimensionalization of the system. © 2024 The Authors. GAMM - Mitteilungen published by Wiley-VCH GmbH.
引用
收藏
相关论文
共 50 条
  • [1] FLUID-RIGID BODY INTERACTION IN AN INCOMPRESSIBLE ELECTRICALLY CONDUCTING FLUID
    Benesova, Barbora
    Necasova, Sarka
    Scherz, Jan
    Schloemerkemper, Anja
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (02) : 929 - 965
  • [2] Fluid-rigid body interaction in a compressible electrically conducting fluid
    Scherz, Jan
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5513 - 5550
  • [3] Boundary stabilization of a fluid-rigid body interaction system
    Badra, Mehdi
    Takahashi, Takeo
    IFAC PAPERSONLINE, 2019, 52 (02): : 64 - 69
  • [4] FEEDBACK STABILIZATION OF A FLUID-RIGID BODY INTERACTION SYSTEM
    Badra, Mehdi
    Takahashi, Takeo
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (11-12) : 1137 - 1184
  • [5] Stabilization of a fluid-rigid body system
    Takahashi, Takeo
    Tucsnak, Marius
    Weiss, George
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6459 - 6493
  • [6] On the regularity of weak solutions to the fluid-rigid body interaction problem
    Muha, Boris
    Necasova, Sarka
    Radosevic, Ana
    MATHEMATISCHE ANNALEN, 2024, 389 (02) : 1007 - 1052
  • [7] Weak-strong uniqueness for the compressible fluid-rigid body interaction
    Kreml, Ondrej
    Necasova, Sarka
    Piasecki, Tomasz
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4756 - 4785
  • [8] Combined interface boundary condition method for fluid-rigid body interaction
    He, Tao
    Zhou, Dai
    Bao, Yan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 : 81 - 102
  • [9] Numerical benchmarking of fluid-rigid body interactions
    von Wahl, Henry
    Richter, Thomas
    Lehrenfeld, Christoph
    Heiland, Jan
    Minakowski, Piotr
    COMPUTERS & FLUIDS, 2019, 193
  • [10] Exact controllability of a fluid-rigid body system
    Imanuvilov, Oleg
    Takahashi, Takeo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (04): : 408 - 437