Time-series anomaly detection in telemetry of ISS providing the reasons with FRAM and SpecTRM

被引:0
|
作者
Iino, Shota [1 ]
Nomoto, Hideki [1 ]
Hirose, Takayuki [1 ]
Michiura, Yasutaka [1 ]
Fukui, Takashi [2 ]
Yohei, Yagisawa [2 ]
Sasaki, Miki [2 ]
Ishizawa, Sayaka [2 ]
Shibayama, Hiroharu [3 ]
机构
[1] Japan Manned Space Systems Corporation, 8F, Otemachi Bldg., 1-6-1, Otemachi, Chiyoda-ku, Tokyo,100-0004, Japan
[2] Japan Nus Co., Ltd., Nishi-Shinjuku Prime Square, 5F, 7-5-25 Nishi-Shinjuku, Shinjuku-Ku, Tokyo,160-0023, Japan
[3] Space Engineering Development Co., Ltd., 5-62-1 Nakano, Nakano-ku, Tokyo,164-0001, Japan
来源
IEEE Aerospace Conference Proceedings | 2023年 / 2023-March卷
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Ferroelectric RAM - Long short-term memory - Safety engineering - Space stations - Telemetering equipment - Temperature - Time series - Time series analysis
引用
收藏
相关论文
共 50 条
  • [1] Time-series anomaly detection in telemetry of ISS providing the reasons with FRAM and SpecTRM
    Iino, Shota
    Nomoto, Hideki
    Hirose, Takayuki
    Michiura, Yasutaka
    Fukui, Takashi
    Yohei, Yagisawa
    Sasaki, Miki
    Ishizawa, Sayaka
    Shibayama, Hiroharu
    2023 IEEE AEROSPACE CONFERENCE, 2023,
  • [2] Towards Explainable Anomaly Detection in Safety-critical Systems: Employing FRAM and SpecTRM in International Space Station Telemetry
    Iino, Shota
    Nomoto, Hideki
    Fukui, Takashi
    Ishizawa, Sayaka
    Yagisawa, Yohei
    Hirose, Takayuki
    Michiura, Yasutaka
    INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2024, 15 (03)
  • [3] Multivariate Anomaly Detection in Mixed Telemetry time-series Using A Sparse Decomposition
    Pilastre, Barbara
    Tourneret, Jean-Yves
    D'Escrivan, Stephane
    Boussouf, Loic
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 430 - 434
  • [4] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [5] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [6] Granger Causality for Time-Series Anomaly Detection
    Qiu, Huida
    Liu, Yan
    Subrahmanya, Niranjan A.
    Li, Weichang
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 1074 - 1079
  • [7] Time-Series Anomaly Detection Service at Microsoft
    Ren, Hansheng
    Xu, Bixiong
    Wang, Yujing
    Yi, Chao
    Huang, Congrui
    Kou, Xiaoyu
    Xing, Tony
    Yang, Mao
    Tong, Jie
    Zhang, Qi
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3009 - 3017
  • [8] Suboptimal Partitioning of Time-series Data for Anomaly Detection
    Jin, Xin
    Sarkar, Soumik
    Mukherjee, Kushal
    Ray, Asok
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1020 - 1025
  • [9] Symbolic time-series analysis for anomaly detection in mechanical
    Khatkhate, Amol
    Ray, Asok
    Keller, Eric
    Gupta, Shalabh
    Chin, Shin C.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2006, 11 (04) : 439 - 447
  • [10] Theseus: Navigating the Labyrinth of Time-Series Anomaly Detection
    Boniol, Paul
    Paparrizos, John
    Kang, Yuhao
    Palpanas, Themis
    Tsay, Ruey S.
    Elmore, Aaron J.
    Franklin, Michael J.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (12): : 3702 - 3705