Physics-Informed Machine Learning with Data-Driven Equations for Predicting Organic Solar Cell Performance

被引:0
|
作者
Khatua, Rudranarayan [1 ]
Das, Bibhas [1 ]
Mondal, Anirban [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Dept Chem, Gandhinagar 382355, Gujarat, India
关键词
organic solar cells; physics-informed machine learning; sustainable energy technology; quantum mechanics; APPROXIMATION;
D O I
10.1021/acsami.4c10868
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Organic solar cells (OSCs) have emerged as a promising solution in pursuing sustainable energy. This study presents a comprehensive approach to advancing OSC development by integrating data-driven equations from quantum mechanical (QM) descriptors with physics-informed machine learning (PIML) models. We circumvent traditional experimental limitations through high-throughput QM calculations, prioritizing transparent and interpretable models. Using the SISSO++ method, we identified key descriptors that effectively map the relationships between input variables and photovoltaic performance metrics. Our innovative predictive models, derived from SISSO outputs, excel in forecasting critical OSC parameters such as short-circuit current (J(SC)), open-circuit voltage (V-OC), fill factor (FF), and power conversion efficiency (PCEmax), achieving high accuracy even with limited data sets. To validate our models' practical utility, we applied the PIML framework to a newly compiled data set of OSC devices, demonstrating their versatility and capability in pinpointing high-performance materials. This research underscores the strong predictive power of our models, bridging the gap between experimental results and theoretical predictions and making significant contributions to the advancement of sustainable energy technologies.
引用
收藏
页码:57467 / 57480
页数:14
相关论文
共 50 条
  • [1] Data-Driven Optimal Power Flow: A Physics-Informed Machine Learning Approach
    Lei, Xingyu
    Yang, Zhifang
    Yu, Juan
    Zhao, Junbo
    Gao, Qian
    Yu, Hongxin
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (01) : 346 - 354
  • [2] Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning
    Quintino, Andre Mendes
    da Rocha, Davi Lotfi Lavor Navarro
    Fonseca Junior, Roberto
    Rodriguez, Oscar Mauricio Hernandez
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (03):
  • [3] Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm
    Guo, Shenghan
    Agarwal, Mohit
    Cooper, Clayton
    Tian, Qi
    Gao, Robert X.
    Grace, Weihong Guo
    Guo, Y. B.
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 145 - 163
  • [5] Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning
    Tian, Yifeng
    Bagchi, Soumendu
    Myhill, Liam
    Po, Giacomo
    Martinez, Enrique
    Lin, Yen Ting
    Mathew, Nithin
    Perez, Danny
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [6] Physics-informed Data-driven Communication Performance Prediction for Underwater Vehicles
    Chitre, Mandar
    Li Kexin
    2022 SIXTH UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS), 2022,
  • [7] Data-driven machine learning approach based on physics-informed neural network for population balance model
    Ali, Ishtiaq
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [8] Predicting glass structure by physics-informed machine learning
    Mikkel L. Bødker
    Mathieu Bauchy
    Tao Du
    John C. Mauro
    Morten M. Smedskjaer
    npj Computational Materials, 8
  • [9] Data-driven thermal state estimation for in-orbit systems via physics-informed machine learning
    Tanaka, Hiroto
    Nagai, Hiroki
    ACTA ASTRONAUTICA, 2023, 212 : 316 - 328
  • [10] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)