PSTNet: Enhanced Polyp Segmentation With Multi-Scale Alignment and Frequency Domain Integration

被引:3
|
作者
Xu, Wenhao [1 ]
Xu, Rongtao [2 ,3 ]
Wang, Changwei [4 ,5 ,6 ]
Li, Xiuli [7 ]
Xu, Shibiao [1 ]
Guo, Li [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China
[3] Mohamed Bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
[4] Qilu Univ Technol, Shandong Acad Sci, Key Lab Comp Power Network & Informat Secur, Minist Educ,Shandong Comp Sci Ctr,Natl Supercomp C, Jinan 250013, Peoples R China
[5] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan 250013, Peoples R China
[6] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100876, Peoples R China
[7] Deepwise Healthcare, AI Lab, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; Transformers; Accuracy; Frequency-domain analysis; Location awareness; Colonoscopy; Polyp segmentation; shunted transformer; multi-scale fusion; VALIDATION;
D O I
10.1109/JBHI.2024.3421550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate segmentation of colorectal polyps in colonoscopy images is crucial for effective diagnosis and management of colorectal cancer (CRC). However, current deep learning-based methods primarily rely on fusing RGB information across multiple scales, leading to limitations in accurately identifying polyps due to restricted RGB domain information and challenges in feature misalignment during multi-scale aggregation. To address these limitations, we propose the Polyp Segmentation Network with Shunted Transformer (PSTNet), a novel approach that integrates both RGB and frequency domain cues present in the images. PSTNet comprises three key modules: the Frequency Characterization Attention Module (FCAM) for extracting frequency cues and capturing polyp characteristics, the Feature Supplementary Alignment Module (FSAM) for aligning semantic information and reducing misalignment noise, and the Cross Perception localization Module (CPM) for synergizing frequency cues with high-level semantics to achieve efficient polyp segmentation. Extensive experiments on challenging datasets demonstrate PSTNet's significant improvement in polyp segmentation accuracy across various metrics, consistently outperforming state-of-the-art methods. The integration of frequency domain cues and the novel architectural design of PSTNet contribute to advancing computer-assisted polyp segmentation, facilitating more accurate diagnosis and management of CRC.
引用
收藏
页码:6042 / 6053
页数:12
相关论文
共 50 条
  • [1] EMS-Net: Enhanced Multi-Scale Network for Polyp Segmentation
    Wang, Miao
    An, Xingwei
    Li, Yuhao
    Li, Ning
    Hang, Wei
    Liu, Gang
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2936 - 2939
  • [2] Automatic Polyp Segmentation via Multi-scale Subtraction Network
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 120 - 130
  • [3] Attention based multi-scale parallel network for polyp segmentation
    Song, Pengfei
    Li, Jinjiang
    Fan, Hui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [4] CrossFormer: Multi-scale cross-attention for polyp segmentation
    Chen, Lifang
    Ge, Hongze
    Li, Jiawei
    IET IMAGE PROCESSING, 2023, 17 (12) : 3441 - 3452
  • [5] Multi-scale nested UNet with transformer for colorectal polyp segmentation
    Wang, Zenan
    Liu, Zhen
    Yu, Jianfeng
    Gao, Yingxin
    Liu, Ming
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (06):
  • [6] Medical image segmentation network based on multi-scale frequency domain filter
    Chen, Yufeng
    Zhang, Xiaoqian
    Peng, Lifan
    He, Youdong
    Sun, Feng
    Sun, Huaijiang
    NEURAL NETWORKS, 2024, 175
  • [7] MSNet: a novel network with comprehensive multi-scale feature integration for gastric cancer and colon polyp segmentation
    He, Dongzhi
    Li, Chenxi
    Ma, Zeyuan
    Li, Yunqi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [8] Enhanced multi-scale networks for semantic segmentation
    Tianping Li
    Zhaotong Cui
    Yu Han
    Guanxing Li
    Meng Li
    Dongmei Wei
    Complex & Intelligent Systems, 2024, 10 : 2557 - 2568
  • [9] Enhanced multi-scale networks for semantic segmentation
    Li, Tianping
    Cui, Zhaotong
    Han, Yu
    Li, Guanxing
    Li, Meng
    Wei, Dongmei
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 2557 - 2568
  • [10] A multi-scale perceptual polyp segmentation network based on boundary guidance
    Lu, Lu
    Chen, Shuhan
    Tang, Haonan
    Zhang, Xinfeng
    Hu, Xuelong
    IMAGE AND VISION COMPUTING, 2023, 138