Enhanced Short-Term Load Forecasting: Error-Weighted and Hybrid Model Approach

被引:0
|
作者
Yu, Huiqun [1 ]
Sun, Haoyi [1 ]
Li, Yueze [1 ]
Xu, Chunmei [1 ]
Du, Chenkun [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Automat Engn, Shanghai 200090, Peoples R China
关键词
short-term power load forecasting; kernel principal component analysis; sparrow search algorithm; gated recurrent unit; time-domain convolutional networks; long short-term memory; extreme gradient boosting;
D O I
10.3390/en17215304
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To tackle the challenges of high variability and low accuracy in short-term electricity load forecasting, this study introduces an enhanced prediction model that addresses overfitting issues by integrating an error-optimal weighting approach with an improved ensemble forecasting framework. The model employs a hybrid algorithm combining grey relational analysis and radial kernel principal component analysis to preprocess the multi-dimensional input data. It then leverages an ensemble of an optimized deep bidirectional gated recurrent unit (BiGRU), an enhanced long short-term memory (LSTM) network, and an advanced temporal convolutional neural network (TCN) to generate predictions. These predictions are refined using an error-optimal weighting scheme to yield the final forecasts. Furthermore, a Bayesian-optimized Bagging and Extreme Gradient Boosting (XGBoost) ensemble model is applied to minimize prediction errors. Comparative analysis with existing forecasting models demonstrates superior performance, with an average absolute percentage error (MAPE) of 1.05% and a coefficient of determination (R2) of 0.9878. These results not only validate the efficacy of our proposed strategy, but also highlight its potential to enhance the precision of short-term load forecasting, thereby contributing to the stability of power systems and supporting societal production needs.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] A Hybrid Stacking Model for Enhanced Short-Term Load Forecasting
    Guo, Fusen
    Mo, Huadong
    Wu, Jianzhang
    Pan, Lei
    Zhou, Hailing
    Zhang, Zhibo
    Li, Lin
    Huang, Fengling
    ELECTRONICS, 2024, 13 (14)
  • [2] A Simple Hybrid Model for Short-Term Load Forecasting
    Annamareddi, Suseelatha
    Gopinathan, Sudheer
    Dora, Bharathi
    JOURNAL OF ENGINEERING, 2013, 2013
  • [3] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [4] An Accurate Hybrid Approach for Electric Short-Term Load Forecasting
    Sina, Alireza
    Kaur, Damanjeet
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2727 - 2742
  • [5] A New Hybrid Model for Short-Term Electricity Load Forecasting
    Haq, Md Rashedul
    Ni, Zhen
    IEEE ACCESS, 2019, 7 : 125413 - 125423
  • [6] Fast and Accurate Short-Term Load Forecasting with a Hybrid Model
    Shin, Sang Mun
    Rasheed, Asad
    Kil-Heum, Park
    Veluvolu, Kalyana C.
    ELECTRONICS, 2024, 13 (06)
  • [7] Hybrid neural network model for short-term load forecasting
    Yin, Chengqun
    Kang, Lifeng
    Sun, Wei
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 408 - +
  • [8] A weighted multi-model Short-Term Load Forecasting system
    Chen, H
    Liu, JW
    POWERCON '98: 1998 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY - PROCEEDINGS, VOLS 1 AND 2, 1998, : 557 - 561
  • [9] Model-independent approach for short-term electric load forecasting with guaranteed error convergence
    Shen, Zhixi
    Wu, Xiaoqin
    Guerrero, Josep M.
    Song, Yongduan
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (12): : 1365 - 1373
  • [10] Short-Term Load Forecasting With Exponentially Weighted Methods
    Taylor, James W.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) : 458 - 464